БСЭ БСЭ - Большая Советская Энциклопедия (СТ)
При расчёте континуальных статически неопределимых систем за неизвестные принимают функции перемещений или усилий, для определения которых составляют необходимые дифференциальные уравнения. В результате решения последних находят величины внутренних силовых факторов (усилий). Использование в расчётной практике ЭВМ позволяет применять для расчёта континуальных систем также и дискретные расчётные схемы. В этом случае континуальную систему разделяют на т. н. конечные элементы, которые соединяются между собой жёсткими или упругими связями. При расчёте систем с разделением их на конечные элементы применяется как метод сил, так и метод перемещений, причём, если выбор метода при расчёте традиционными способами связывался с количеством совместно решаемых уравнений, то с появлением ЭВМ предпочтение, как правило, отдаётся методу перемещений, позволяющему проще определять коэффициенты при неизвестных. Для определения перемещений упругих систем применяется формула Мора, полученная на базе основных теорем С. м., и, в частности, обобщённого принципа возможных (виртуальных) перемещений (см. Возможных перемещений принцип ).
При учёте пластических деформаций материала задача становится физически нелинейной, т.к. в этом случае принцип независимости действия сил неприменим. Встречаются также геометрически нелинейные системы, при расчёте которых вследствие значительной величины перемещений необходимо учитывать изменения геометрии системы и смещение нагрузки в процессе деформации. При расчёте нелинейных систем обычно применяется метод последовательных приближений, причём в пределах каждого приближения система считается упругой.
Важной задачей С. м. является изучение условий устойчивости и колебаний сооружений. При расчётах на устойчивость применяются статические, энергетические и динамические методы, с помощью которых определяются критические параметры, характеризующие совокупность действующих сил. Величины критических параметров (в простейших случаях — критических сил) зависят от геометрии сооружения, особенностей нагрузок и воздействий, а также от констант, характеризующих деформативность материала. Наиболее сложными являются расчёты сооружений на устойчивость при действии динамических сил. Теория колебаний в С. м., помимо методов определения частот и форм колебаний сооружений, содержит разделы, посвященные вопросам гашения вибраций, принципам и методам виброизоляции.
Использование ЭВМ позволяет широко применять при решении задач современной С. м. методы линейной алгебры с матричной записью не только систем уравнений, но и всех вычислений, связанных с определением силовых факторов и перемещений, критических нагрузок и т.д. В связи с этим составляются специальные алгоритмы и программы с полной автоматизацией всех вычислительных процессов.
Историческая справка. На разных этапах развития С. м. методы расчёта сооружений в значительной степени определялись уровнем развития математики, механики и науки о сопротивлении материалов.
До конца 19 в. в С. м. применялись графические методы расчёта, и наука о расчёте сооружений носила название «графическая статика». В начале 20 в. графические методы стали уступать место более совершенным — аналитическим, и примерно с 30-х гг. графическими методами практически перестали пользоваться. Аналитические методы, зародившиеся в 18 — начале 19 вв. на основе работ Л. Эйлера , Я. Бернулли , Ж. Лагранжа и С. Пуассона , были недоступны инженерным кругам и поэтому не нашли должного практического применения. Период интенсивного развития аналитических методов наступил лишь во 2-й половине 19 в., когда в широких масштабах развернулось строительство железных дорог, мостов, крупных промышленных сооружений. Труды Дж. К. Максвелла , А. Кастильяно (Италия), Д. И. Журавского положили начало формированию С. м. как науки. Известный рус. учёный и инженер-строитель Л. Д. Проскуряков впервые (90-е гг.) ввёл понятие о линиях влияния и их применении при расчёте мостов на действие подвижной нагрузки. Приближённые методы расчёта арок были даны франц.узским учёным Брессом, а более точные методы разработаны Х. С. Головиным . Существенное влияние на развитие теории расчёта статически неопределимых систем оказали работы К. О. Мора , предложившего универсальный метод определения перемещений (формула Мора). Большое научное и практическое значение имели работы по динамике сооружений М. В. Остроградского , Дж. Рэлея , А. Сен-Венана . Благодаря исследованиям Ф. С. Ясинского , С. П. Тимошенко , А. Н. Динника , Н. В. Корноухова и др. значительное развитие получили методы расчёта сооружений на устойчивость. Крупные успехи в развитии всех разделов С. м. были достигнуты в СССР. Трудами сов. учёных А. Н. Крылова , И. Г. Бубнова , Б. Г. Галёркина , И. М. Рабиновича , И. П. Прокофьева, П. Ф. Папковича , А. А. Гвоздева , Н. С. Стрелецкого , В. З. Власова , Н. И. Безухова и др. были разработаны методы расчёта сооружений, получившие широкое распространение в проектной практике. В научных учреждениях и вузах СССР созданы и успешно развиваются новые научные направления в области С. м. Важным проблемам С. м. посвящены исследования В. В. Болотина (теория надёжности и статистические методы в С. м.), И. И. Гольденблата (динамика сооружений), А. Ф. Смирнова (устойчивость и колебания сооружений) и др.
Проблемы современной С. м. Одной из актуальных задач С. м. является дальнейшее развитие теории надёжности сооружений на основе использования статистических методов обработки данных о действующих нагрузках и их сочетаниях, о свойствах строительных материалов, а также о накоплении повреждений в сооружениях различных типов. Большое значение приобретают исследования по теории предельных состояний , имеющие целью переход к практическому расчёту сооружений на основе вероятностных методов. Важная задача С. м. — расчёт сооружений как единых пространственных систем, без расчленения их на отдельные конструктивные элементы (балки, рамы, колонны, плиты и т.д.); она связана с необходимостью использования тех запасов несущей способности сооружений, которые не могут быть выявлены при поэлементном расчёте. Такой подход позволяет получать более точную картину распределения внутренних усилий в сооружениях и обеспечивает существенную экономию материалов. Расчёт сооружений как единых пространственных систем требует дальнейшего развития метода конечных элементов; последний даёт возможность рассчитывать весьма сложные сооружения на действие статических, динамических (в т. ч. сейсмических) и др. нагрузок. Большой научный интерес представляют: разработка методов решения физически и геометрически нелинейных задач, которые более полно учитывают реальные условия работы сооружений; изучение вопросов оптимального проектирования строительных конструкций с использованием ЭВМ; проведение исследований, связанных с разработкой теории разрушения сооружений, в частности, вопросов их «живучести»), что особенно важно для строительства в районах, подверженных землетрясениям.
Лит.: Тимошенко С. П., История науки о сопротивлении материалов с краткими сведениями по истории теории упругости и теории сооружений, пер. с англ., М., 1957; Строительная механика в СССР. 1917—1967, М., 1969; Киселев В. А., Строительная механика, 2 изд., М., 1969; Снитко Н. К., Строительная механика, 2 изд., М., 1972; Болотин В. В., Гольденблат И. И., Смирнов А. Ф., Строительная механика, 2 изд., М., 1972.
Под редакцией А. Ф. Смирнова.
«Строительная механика и расчёт сооружений»
«Строи'тельная меха'ника и расчёт сооруже'ний», научно технический журнал, орган Госстроя СССР. Издаётся в Москве с 1959; выходит один раз в два месяца. Освещает актуальные теоретические вопросы расчёта сооружений и строительной механики; публикует рекомендации по внедрению в практику проектирования и строительства научных достижений и методов расчёта, обеспечивающих надёжность сооружений, повышение уровня индустриализации строительства; информирует об отечественном и зарубежном опыте. Тираж (1976) около 7 тыс. экз.
Строительная механика корабля
Строи'тельная меха'ника корабля', научная дисциплина, рассматривающая методы расчёта прочности и жёсткости корпусных конструкций судна . Изучает воздействие внешних сил на конструкции, исследует напряжения и деформации, возникающие в них под действием заданной системы сил. С. м. к. базируется на положениях теоретической механики , упругости теории и пластичности теории , надёжности , сопротивления материалов .