БСЭ БСЭ - Большая Советская Энциклопедия (ЖЕ)
В. В. Ковальский.
В медицине лекарственные препараты Ж. (восстановленное Ж., лактат Ж., глицерофосфат Ж., сульфат 2-валентного Ж., таблетки Бло, раствор яблочнокислого Ж., ферамид, гемостимулин и др.) используют при лечении заболеваний, сопровождающихся недостатком Ж. в организме (железодефицитная анемия), а также как общеукрепляющие средства (после перенесённых инфекционных заболеваний и др.). Изотопы Ж. (52Fe, 55Fe и 59Fe) применяют как индикаторы при медико-биологических исследованиях и диагностике заболеваний крови (анемии, лейкозы, полицитемия и др.).
Лит.: Общая металлургия, М., 1967; Некрасов Б. В., Основы общей химии, т. 3, М., 1970; Реми Г., Курс неорганической химии, пер. с нем., т. 2, М., 1966; Краткая химическая энциклопедия, т. 2, М., 1963; Левинсон Н. Р., [Изделия из цветного и чёрного металла], в кн.: Русское декоративное искусство, т. 1—3, М., 1962—65; Вернадский В. И., Биогеохимические очерки. 1922—1932, М. — Л., 1940; Граник С., Обмен железа у животных и растений, в сборнике: Микроэлементы, пер. с англ., М., 1962; Диксон М., Уэбб Ф., ферменты, пер. с англ., М., 1966; Neogi P., Iron in ancient India, Calcutta, 1914; Friend J. N., Iron in antiquity, L.,1926; Frank E. B., Old French ironwork, Camb. (Mass.), 1950; Lister R., Decorative wrought ironwork in Great Britain, L., 1960.
Дверная ручка и дверная петля-жиковина. 17 в.
Шкатулка из Великого Устюга. 18 в. Русский музей. Ленинград.
Ворота ограды церкви Вознесения в Коломенском (ныне в черте Москвы). 17 в.
Канделябр из Каталонии. 15 в. Музей Кау Феррат. Барселона.
Флюгер с Владимирской башни Китай-города в Москве. Конец 17 в. Исторический музей. Москва.
Решётка ограды дома Челлеси в Ареццо. 17 в.
Цубы (пластины, отделяющие рукоятку меча от лезвия). 14—16 вв. Национальный музей. Токио.
Решетка ограды церкви Никиты Мученика в Москве. 18 в.
Л. П. Катаев, В. П. Смирнов. Памятник пяти большевикам, расстрелянным в 1918 белогвардейцами, на Острове Залита (Псковское озеро).1967.
Железо самородное
Желе'зо саморо'дное, по условиям нахождения различаются теллурическое, или земное железо (никель-железо), и метеоритное (космическое) Ж. с., всегда никелистое (камасит и тэнит). Теллурическое железо — редкий минерал, представляющий собой модификацию a-железа; обладает структурой объёмноцентрированного куба, кристаллизуется в кубической системе. Встречается в виде отдельных чешуек, зёрен, проволочных форм или губчатых масс и скоплений, достигающих веса нескольких т. Химический состав в основном ограничивается Fe и Ni, дающими твёрдые растворы с разрывом смесимости; различают т. н. ферриты с содержанием Ni до 3% и самородное никель-железо (аваруит, катаринит, октиббегит, джозефинит и др. разновидности) с содержанием Ni от 30 до 80%. Твёрдость по минералогической шкале от 4 до 5 (у Ni-железа); плотность ферритов 7300—7800 кг/м3; у Ni-железа 7800—8200 кг/м3. Цвет и блеск, как у металлического железа; у разновидностей Ni-железа цвет серебряно-белый. Сильно магнитно. В земной коре образуется и сохраняется редко. Известно в виде зёрен, губчатых скоплений в базальтовых породах (о. Диско, близ Гренландии; Кассель, ФРГ, и др.). Редко встречается в перидотитах и серпентинитах и очень редко в гранитах. Встречается в платиноносных россыпях, а также образуется в сидеритовых осадках, в каменных углях и в болотных железных рудах. Очень неустойчиво и легко переходит в гидроокиси железа. Метеоритное Ж. с. образуется в процессах формирования космических тел и попадает на Землю в виде метеоритов.
Лит.: Минералы. Справочник, т.1, М., 1960.
Г. П. Барсанов.
Железобактерии
Железобакте'рии, бактерии, способные окислять закисные соединения железа в окисные и использовать освобождающуюся при этом энергию на усвоение углерода из углекислого газа или карбонатов (см. Хемосинтез). Окисление протекает следующим образом:
4Fe (HCO3)2 + 6H2O + O2 = 4Fe (OH)3 + 4H2CO3 + 4CO2.
При этой реакции энергии выделяется немного, поэтому Ж. окисляют большое количество закисного железа. Из Ж. наиболее изучена в физиологическом и биохимическом отношении неспороносная подвижная палочка Thiobacillus ferrooxidans, окисляющая и серу. К Ж. относятся также некоторые нитчатые бактерии из рода Leptothrix, с толстыми ржавого цвета капсулами (влагалищами), содержащими гидрат окиси железа; Gallionella, состоящая из спирально закрученных в виде пучков тончайших (0,01 мкм) нитей, образующих стебелёк, на поверхности которого откладывается гидрат окиси железа. Ж. обитают в воде пресных и солёных водоёмов, играют большую роль в круговороте железа в природе. На дне водоёмов образуют тёмно-коричневые дискообразной формы конкреции, состоящие из железа и марганца.
А. А. Имшенецкий.
Железобетон
Железобето'н, сочетание бетона и стальной арматуры, монолитно соединённых и совместно работающих в конструкции. Термин «Ж.» нередко употребляется как собирательное название железобетонных конструкций и изделий. Идея сочетания в Ж. двух крайне различающихся своими свойствами материалов основана на том, что прочность бетона при растяжении значительно (в 10—20 раз) меньше, чем при сжатии, поэтому в железобетонной конструкции он предназначается для восприятия сжимающих усилий; сталь же, обладающая высоким временным сопротивлением при растяжении и вводимая в бетон в виде арматуры (см. Арматурная сталь), используется главным образом для восприятия растягивающих усилий. Взаимодействие столь различных материалов весьма эффективно: бетон при твердении прочно сцепляется со стальной арматурой и надёжно защищает её от коррозии, т. к. в процессе гидратации цемента образуется щелочная среда; монолитность бетона и арматуры обеспечивается также относительной близостью их коэффициентов линейного расширения (для бетона от 7,5•10-6 до 12•10-6, для стальной арматуры 12·10-6); в пределах изменения температуры от —40 до 60°С основные физико-механические характеристики бетона и арматуры практически не изменяются, что позволяет применять Ж. во всех климатических зонах.
Основа взаимодействия бетона и арматуры — наличие сцепления между ними. Значение сцепления или сопротивления сдвигу арматуры в бетоне зависит от следующих факторов: механического зацепления в бетоне специальных выступов или неровностей арматуры, сил трения от обжатия арматуры бетоном в результате его усадки (уменьшения в объёме при твердении на воздухе) и сил молекулярного взаимодействия (склеивания) арматуры с бетоном; определяющим является фактор механического зацепления. Применение арматуры периодического профиля (см. Арматура железобетонных конструкций), сварных каркасов и сеток, устройство крюков и анкеров увеличивают сцепление арматуры с бетоном и улучшают их совместную работу.
Нарушение структуры и заметное снижение прочности бетона наступает при температуре свыше 60°С; при кратковременном воздействии температуры в 200°С прочность бетона снижается на 30%, а при длительном — на 40%. температура в 500—600°С является для обычного бетона критической, при которой он разрушается в результате обезвоживания и разрыва скелета цементного камня. Поэтому обычный Ж. рекомендуется применять при температуре не выше 200°С. В тепловых агрегатах, работающих при температурах до 1700°С, используется жаростойкий бетон. Для предохранения арматуры от коррозии и быстрого нагревания (например, при пожаре), а также надёжного её сцепления с бетоном в железобетонных конструкциях предусматривается устройство защитного слоя бетона толщиной от 10 до 30 мм; в агрессивной среде толщина защитного слоя увеличивается.
Большое значение для Ж. имеют усадка и ползучесть бетона. В результате сцепления арматура препятствует свободной усадке бетона, что приводит к возникновению начальных напряжений растяжения в бетоне и сжимающих напряжений в арматуре. Ползучесть бетона вызывает перераспределение усилий в статически неопределимых системах, увеличение прогибов в изгибаемых элементах, перераспределение напряжении между бетоном и арматурой в сжатых элементах и т. д. Эти свойства бетона учитываются при проектировании железобетонных конструкций. Усадка и низкая предельная растяжимость бетона (0,15 мм на 1 м) приводят к неизбежному появлению трещин в растянутой зоне конструкций при эксплуатационных нагрузках. Практика показывает, что при нормальных условиях эксплуатации трещины шириной раскрытия до 0,3 мм не снижают несущей способности и долговечности Ж. Однако низкая трещиностойкость ограничивает возможности дальнейшего совершенствования Ж. и, в частности, использования для арматуры более экономичных высокопрочных сталей. Избежать образования трещин в Ж. можно методом предварительного напряжения, при котором бетон в растянутых зонах конструкции подвергается искусственному обжатию (см. Предварительно напряжённые конструкции) за счёт предварительного (механического или электротермического) растяжения арматуры. Дальнейшим развитием предварительно напряжённого Ж. являются самонапряжённые железобетонные конструкции, в которых обжатие бетона и растяжение арматуры достигаются в результате расширения бетона (изготовленного на т. н. напрягающем цементе) при определенной температурно-влажностной обработке. Благодаря своим высоким технико-экономическим показателям (выгодное использование высокопрочных материалов, отсутствие трещин, сокращение расхода арматуры и др.) предварительно напряжённый Ж. успешно применяется в несущих конструкциях зданий и инженерных сооружений. Существенный недостаток Ж. — большая объёмная масса — в значительной мере устраняется при использовании лёгких бетонов (на искусственных и природных пористых заполнителях) и ячеистых бетонов.