Kniga-Online.club
» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ФУ)

БСЭ БСЭ - Большая Советская Энциклопедия (ФУ)

Читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (ФУ). Жанр: Энциклопедии издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Соч. в рус. пер.: Витамины, 3 изд., М. — Л., 1929.

  Л. Н. Шамин.

Функия

Фу'нкия (Funkia), род растений семейства лилейных. Название часто употребляется в цветоводстве вместо правильного — хоста .

Функции ладовые

Фу'нкции ла'довые в музыке, значение отдельных звуков в ладу . Понятие Ф. л. наиболее разработано применительно к аккордам (гармонические функции) — обозначает роль аккордов в ладовой организации. Различают два рода общих функциональных значений аккордов — устойчивость (состояние покоя) и неустойчивость (состояние движения). В мажоро-минорной тональной системе устойчивость представлена функцией тоники (обозначение Т). По тонике, устою, определяется центр лада. Неустойчивых функций две — доминанта (D) и субдоминанта (S). Аккорды доминанты и субдоминанты строятся на звуках, находящихся в отношении наивысшего акустического родства к основному звуку тоники и лежащих квинтой выше (D) и квинтой ниже (S). Отсюда логическая противоположность функций D и S, усиливающаяся контрастом их звукового состава. Образующийся между основным звуком S и терцией D (вводным тоном лада) интервал тритона делает их тяготение к приме и терции тоники особенно сильным. Действие гармонических функций наиболее ярко проявляется в каденциях.

  Предпосылки теории гармонических функций содержатся в работах Ж. Ф. Рамо , М. Гауптмана, А. Эттингена. Идея «групп» Т, D и S разработана Н. А. Римским-Корсаковым в его «Учебнике гармонии». Функциональную теорию гармонии в развитом её виде выдвинул в конце 19 в. Х. Риман . По Риману, все аккорды лада возникают как трансформации лишь трёх гармоний — тоники, доминанты и субдоминанты. Оригинальную концепцию Ф. л. («моментов» тяготения) создал советский теоретик Б. Л. Яворский. Важный вклад в развитие теории внёс советский музыковед Ю. Н. Тюлин. Теория гармонии, функций наиболее применима к анализу гармонии в музыке середины 18 — начала 20 вв.

  Лит.: Риман Г., Упрощенная гармония или учение о тональных функциях аккордов, пер. с нем., М., 1901; Катуар Г. Д., Теоретический курс гармонии, ч, 1—2, М., 1924—25; Тюлин Ю. Н., Учение о гармонии, 3 изд., ч. 1, М., 1966; Способин И. В., Лекции по курсу гармонии, М., 1969; Imig R., Systeme der Funktionsbezeichnung in den Harmonielehren seit Hugo Riemann, Düsseldorf, 1970.

  Ю. Н. Холопов.

Функции (математ.)

Фу'нкции в математике, см. Функция .

Функции множества

Фу'нкции мно'жества, функции, сопоставляющие каждому множеству из некоторого класса множеств определённое число. Например, длина отрезка является Ф. м., определённой на классе всех отрезков на прямой (функцией отрезка).

  Интеграл  при заданной интегрируемой функции j(x ) также является функцией отрезка — интервала интегрирования [a, b]. Рассматривают также функции от областей на плоскости или в пространстве. Например, при заданном распределении плотностей масса, заключённая в данной области W, является функцией этой области. Понятие функции области — более гибкий аппарат для описания физических явлений, чем понятие функции точки, т.к. позволяет учитывать случаи, когда плотность физических величин в отдельных точках бесконечна (точечные источники и т.д.). Кроме того, это понятие более отвечает условиям физического эксперимента (при котором наблюдается не функция точки, а среднее от этой функции по некоторой малой области).

  Понятие Ф. м. получило развитие в связи с построением теории интеграла Лебега, в которой приходится рассматривать не только функции от областей, но и функции от произвольных измеримых множеств. Одним из первых примеров такой Ф. м. является мера Лебега m(Е ) измеримого множества Е (см. Мера множества ). Эта Ф. м. вполне аддитивна, т. е. мера суммы любой конечной или счётной совокупности непересекающихся измеримых множеств есть сумма мер этих множеств. Наряду с лебеговской мерой множеств рассматривают др. меры, являющиеся неотрицательными вполне аддитивными Ф. м., определёнными на соответствующем классе множеств. Такие Ф. м. встречаются в общей теории интеграла. Ф. м. f (E ) называют абсолютно непрерывной относительно некоторой меры m, если f (E ) = 0 при m(Е ) = 0. Так, интеграл Лебега  заданной суммируемой функции j(x ) по множеству М является вполне аддитивной абсолютно непрерывной (относительно меры Лебега) функцией от М . Обратно, всякая вполне аддитивная абсолютно непрерывная Ф. м. может быть представлена в качестве интеграла Лебега от некоторой суммируемой функции j(x ). Важным примером Ф. м. являются распределения вероятностей.

  Лит.: Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 4 изд., М., 1976; Халмош П., Теория меры, пер. с англ., М., 1953

Функции специальные

Фу'нкции специа'льные, см. Специальные функции .

Функции (физиологич.)

Фу'нкции (от лат. functio — исполнение, совершение) физиологические, осуществление человеком, животными и растительными организмами различных отправлений, обеспечивающих их жизнедеятельность и приспособление к условиям окружающей среды, физиология изучает Ф. организма на молекулярном, клеточном, тканевом, органном и системном уровнях, а также на уровне целостного организма. К числу т. н. системных Ф. животного организма относятся, например, дыхательная, сердечно-сосудистая, пищеварительная, зрительная, слуховая, вестибулярная. Поскольку в основе любой Ф. лежит непрерывно идущий процесс обмена веществ , их исследование предусматривает выяснение происходящих в организме (системе органов, отдельном органе, ткани и т.д.) физических, химических и структурных изменений. В связи с этим существенное значение приобретают работы в области биологии развития , изучающей процессы и движущие силы индивидуального развития организма — онтогенеза .

  Важную роль в комплексном изучении Ф. сыграл сравнительно-исторический метод, привнесённый в физиологию И. М. Сеченовым , И. П. Павловым , Н. Е. Введенским . Трудами Л. А. Орбели и его школы было создано оригинальное направление, изучающее физиологические, биохимические и структурные основы эволюции Ф., — эволюционная физиология . В свою очередь исследования эволюции Ф. оказали влияние на изучение изменений Ф., наступающих в организме под влиянием различных факторов природного или искусственного происхождения (изменения климатических условий, двигательной активности, состава и свойств пищи, недостаток или избыток кислорода в воздухе, невесомость и многое др.), а также адаптации организма к условиям внешней среды (см. Экологическая физиология ). Изучение эволюции Ф. и особенно их приспособляемости к окружающей среде неразрывно связано с исследованием механизмов регуляции Ф. (см. Гуморальная регуляция , Гормональная регуляция , Нейро-гуморальная регуляция ). Важный этап в изучении Ф. — созданная К. М. Быковым и его школой концепция о взаимоотношениях коры больших полушарий головного мозга и внутренних органов (см. Кортико-висцеральные отношения ). Развитие этой концепции позволило вплотную подойти к разработке проблемы управления деятельностью висцеральных, т. е. внутренностных, систем организма, основанной на представлении об этой деятельности как особой форме поведения. Имеется в виду, что Ф. висцеральных систем, как и поведение организма в целом, всегда адаптивны, развиваются в достаточно строгой последовательности отдельных составляющих их основу реакций, а также обладают способностью к «обучению» (совершенствованию). Исследования в этом направлении имеют своей задачей познание механизмов и закономерностей регуляции Ф. организма с целью активного вмешательства в процесс нормализации его жизнедеятельности в случае отклонений от нормы, в том числе и в экстремальных условиях.

  Лит. см. при ст. Физиология животных и человека.

  В. Н. Черниговский,

  К. А. Ланге.

Функции элементарные

Фу'нкции элемента'рные, см. Элементарные функции .

Функций теория

Фу'нкций тео'рия, раздел математики, в котором изучаются общие свойства функций . Ф. т. распадается на две части: теория функций действительного переменного и теория функций комплексного переменного.

Перейти на страницу:

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Большая Советская Энциклопедия (ФУ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (ФУ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*