Kniga-Online.club
» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ФО)

БСЭ БСЭ - Большая Советская Энциклопедия (ФО)

Читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (ФО). Жанр: Энциклопедии издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Инфратепловая аэросъёмка (инфракрасная нефотографическая, ИК-термальная) относится к числу пассивных Ф. а. (т. е. без заданного импульса) и предназначена для регистрации собственного теплового излучения объектов местности в диапазоне длин волн 1,2–25 мкм. Из имеющихся в этом диапазоне нескольких атмосферных «окон пропускания» тепловых лучей используются соответствующие интервалам 3,4–4,2 мкм для фиксации излучения от сильно нагретых тел и 8–12 мкм – от слабо нагретых. Сканирование в процессе инфратепловой Ф. а. ведётся перпендикулярно линии полёта, с помощью оптического устройства, обеспечивающего большой угол обзора (порядка 60°). Современные приборы для этой Ф. а., называются аэросъёмочными тепловизорами, могут давать аэроснимки самых различных масштабов с геометрическим разрешением деталей на местности около 0,001 от высоты съёмки и передачей температурных различий в 0,5–1 °С. Поскольку тепловые контрасты на земной поверхности подвержены значительным изменениям – от сезона к сезону и в течение суток, в зависимости от экспозиции по отношению к солнцу и различий в тепловой инерции тел, работы искусственных источников тепла, а также от метеорологической обстановки (особенно облачности), – для выявления свойств изучаемых объектов в ряде случаев целесообразна неоднократная (в т. ч. за пределами светового дня) инфратепловая Ф. а. одного и того же участка местности. Таким образом, высокая изменчивость регистрируемых величин, предопределяя значительные трудности при выборе параметров съёмки, вместе с тем даёт дополнительные возможности для воспроизведения объектов на аэроснимках. Данный вид съёмки эффективен при создании карт вулканической деятельности (зон температурных аномалий, выходов лавы, нагретых газов и вод) и мерзлотных явлений, выделении увлажнённых грунтов, исследованиях температурного режима и загрязнённости водоёмов и характера морских льдов, обнаружении водотоков, закрытых растительностью, оконтуривании мест возгорания под землёй и на поверхности (в отвалах, лесных массивах и др.), проверке энергосистем и дренажных сооружений, а также при периодическом контроле состояния посевов.

  Радиолокационная (радарная) аэросъёмка относится к числу активных Ф. а. и предназначена для регистрации отражённых наземными объектами электромагнитных волн радиодиапазона (от нескольких мм до нескольких м ), источником излучения и приёмником которых служит установленная на носителе радиолокационная система. В картографии наибольшее применение находит радиолокационная станция бокового обзора, работающая в интервале волн 1–3 см. Сканирование ведётся с помощью особого антенного устройства и обеспечивает получение изображения местности в виде двух широких полос, параллельных линии полёта. Преобладающие масштабы радиолокационных аэроснимков (см. вклейку к ст. Аэроснимок ) 1: 60 000 – 1: 400 000. Наибольшее разрешение деталей на местности 3–5 м. Характер воспроизведения на этих аэроснимках наземных объектов определяется и различной интенсивностью отражения ими радиоволн, которая в свою очередь зависит от свойств и формы объектов, крутизны и направления склонов рельефа. Изменяя, с учётом этих особенностей, основные параметры станций (длину волн, частоту и форму импульсов), добиваются требующегося разделения на аэроснимках изображений изучаемых объектов. Радиолокационная Ф. а. может выполняться вне зависимости от времени суток и состояния атмосферы, т. е. является всепогодной. Благодаря способности радиоволн проникать на десятки см в земную поверхность основная сфера её применения – геологическая разведка и изучение льдов. Особенно существенно, что при этой аэросъёмке, по сравнению с обычной фотографической, обеспечивается значительно лучшая дешифрируемость разрывных тектонических нарушений, характера горных пород под растительностью, снегом и поверхностными наносами, механического состава (в особенности размеров частиц) последних и наличия примесей металлов, структуры ледовых образований, трещин и русел талых вод в толще льда. На радиолокационных аэроснимках чётче воспроизводятся наземные объекты, приуроченные к глубоко затенённым участкам. Поскольку по этим снимкам может быть построена стереоскопическая модель местности (с точностью определения высот до 15 м ), они используются при изучении некоторых труднодоступных районов (полярные пустыни, экваториальные джунгли с постоянной облачностью и др.) для создания топографических карт обзорного характера.

  Лит.: Смирнов Л. Е., Аэрокосмические методы географических исследований, Л., 1975: Харин Н. Г., Дистанционные методы изучения растительности, М., 1975; Богомолов Л, А., Дешифрирование аэроснимков, М., 1976; Применение новых видов аэросъемок при геологических исследованиях, Л., 1976; Многозональная аэрокосмическая съемка и ее использование при изучении природных ресурсов, М., 1976; Remote sensing. Techniques for environmental analysis, Santa Barbara, 1974; Manual of Remote sensing, t. 1–2, Waschington, 1975. См. также лит. к статье Космическая съёмка .

  Л. М. Гольдман.

Фотоэлектронная спектроскопия

Фотоэлектро'нная спектроскопи'я, метод изучения строения вещества, основанный на измерении энергетических спектров электронов, вылетающих при фотоэлектронной эмиссии. Согласно закону Эйнштейна, сумма энергии связи вылетающего электрона (работы выхода ) и его кинетическая энергии равна энергии падающего фотона h n (h – Планка постоянная , n – частота падающего излучения). По спектру электронов можно определить энергии связи электронов и их уровни энергии в исследуемом веществе.

  В Ф. с. применяются монохроматическое рентгеновское или ультрафиолетовое излучения с энергией фотонов от десятков тысяч до десятков эв (что соответствует длинам волн излучения от десятых долей  до сотен ). Спектр фотоэлектронов исследуют при помощи электронных спектрометров высокого разрешения (достигнуто разрешение до десятых долей эв в рентгеновской области и до сотых долей эв в ультрафиолетовой области).

  Метод Ф. с. применим к веществу в газообразном, жидком и твёрдом состояниях и позволяет исследовать как внешние, так и внутренние электронные оболочки атомов и молекул, уровни энергии электронов в твёрдом теле (в частности, распределение электронов в зоне проводимости). Для молекул энергии связи электронов во внутренних оболочках образующих их атомов зависят от типа химической связи (химические сдвиги), поэтому Ф. с. успешно применяется в аналитической химии для определения состава вещества и в физической химии для исследования химической связи. В химии метод Ф. с. известен под название ЭСХА – электронная спектроскопия для химического анализа (ESCA – electronic spectroscopy for chemical analysis).

  Лит.: Вилесов Ф. И., Курбатов Б. Л., Теренин А. Н., «Докл. АН СССР», 1961, т. 138, с. 1329–32; Электронная спектроскопия, пер. с англ., М., 1971.

  М. А. Ельяшевич.

Фотоэлектронная эмиссия

Фотоэлектро'нная эми'ссия, внешний фотоэффект, испускание электронов твёрдыми телами и жидкостями под действием электромагнитного излучения (фотонов) в вакуум или др. среды. Практическое значение в большинстве случаев имеет Ф. э. из твёрдых тел (металлов, полупроводников, диэлектриков) в вакуум. Основные закономерности Ф. э. состоят в следующем: 1) количество испускаемых электронов пропорционально интенсивности излучения; 2) для каждого вещества при определенном состоянии его поверхности и температуре Т ® 0 К существует порог – минимальная частота w0 (или максимальная длина волны l0 ) излучения, за которой Ф. э. не возникает; 3) максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой излучения и не зависит от его интенсивности.

  Ф. э. – результат 3 последовательных процессов: поглощения фотона и появления электрона с высокой (по сравнению со средней) энергией; движения этого электрона к поверхности, при котором часть энергии может рассеяться; выхода электрона в др. среду через поверхность раздела. Количественной характеристикой Ф. э. является квантовый выход Y – число вылетевших электронов, приходящееся на 1 фотон излучения, падающего на поверхность тела. Величина Y зависит от свойств тела, состояния его поверхности и энергии фотонов.

  Ф. э. из металлов возникает, если энергия фотона ( – Планка постоянная , w – частота излучения) превышает работу выхода металла е j. Последняя для чистых поверхностей металлов > 2 эв (а для большинства из них > 3 эв ), поэтому Ф. э. из металлов (если работа выхода не снижена специальным покрытием поверхности) может наблюдаться в видимой и ультрафиолетовой (для щелочных металлов и бария) или только в ультрафиолетовой (для всех др. металлов) областях спектра. Вблизи порога Ф. э. для большинства металлов Y ~ 10-4 электрон/фотон. Малая величина Y обусловлена тем, что поверхности металлов сильно отражают видимое и ближнее ультрафиолетовое излучение (коэффициент отражения R > 90%), так что в металл проникает лишь малая доля падающего на него излучения. Кроме того, фотоэлектроны при движении к поверхности сильно взаимодействуют с электронами проводимости, которых в металле много (~ 1022 см -3 ), и быстро рассеивают энергию, полученную от излучения. Энергию, достаточную для совершения работы выхода, сохраняют только те фотоэлектроны, которые образовались вблизи поверхности на глубине, не превышающей несколько нм (рис. , а). Менее «энергичные» фотоэлектроны могут пройти без потерь энергии в десятки раз больший путь в металле, но их энергия недостаточна для преодоления поверхностного потенциального барьера и выхода в вакуум.

Перейти на страницу:

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Большая Советская Энциклопедия (ФО) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (ФО), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*