Приношение Гермесу - Глеб Бутузов
D → E → F → F# → A → B → C' → C#' → E'
Сходную по принципу гамму предложил также Роберт Фладд (добавив к планетам четыре стихии и область, где обитают ангелы):
→ → → → → → → → → → → Звёзды → Ангелыg'' → a'' → b'' → c' → d' → e' → f#' → g' → a' → b' → C → D → E – F# – G
Ко второй категории относится хорошо известная нисходящая гамма Боэция, представляющая собой два связанных диатонических тетрахорда (от «ре» второй октавы до «ля» первой октавы и от «ля» первой октавы до «ми»):
→ → → → → →D' → С → B♭ → A → G → F → E
Другой вариант нисходящей гаммы предложил выдающийся арабский философ Аль-Кинди:
→ → → → → →E' → E♭' → D → B → B♭ → A → G
Плутарх в работе De Animae Procreatione, анализируя платоновского Тимея, предлагает следующую явно пифагорейскую систему:[120]
(Земля) →
→ → → → → → → (Звёзды)b'' → e' → a' → b' → D → E → A
Безусловно, все вышеприведённые системы соответствий с точки зрения современной науки являются «произвольными» и основанными на «субъективных», то есть эстетических, теологических и философских концепциях их авторов. Однако на заре развития этой самой науки, на рубеже XVI–XVII веков, немецкий астроном и астролог (тогда эти понятия ещё не разделялись) Иоганн Кеплер вывел так называемый «закон планетарных движений», который с позиций обычной математики не только примирил две вышеупомянутых категории музыкальных систем макрокосма, но также дал настолько точные значения параметров движения планет, что они имеют практическое значение и сегодня. Закон этот звучит следующим образом: «Квадраты периода обращения планет вокруг солнца соотносятся как кубы среднего расстояния до него». Интересно, что закон сей был выведен на основании наблюдения за движением семи планет Солнечной системы, известных на то время; открытые позднее Нептун и Уран подтвердили истинность данного закона с очень малой погрешностью.[121]
Следует отметить, что дальнейшие рассуждения Кеплера, который на тот момент был, прежде всего, практикующим астрологом, вполне логичны: если точно известны музыкальные интервалы, характеризующие соотношения между планетами, значит можно обозначить их на карте неба и установить их связь с планетарными аспектами. Однако, когда он разбил круг на 360˚ и расположил сектора в соответствии с основными музыкальными интервалами, картина получилась весьма удручающая: октава поделила круг пополам на два сектора по 180˚, что даёт аспект «оппозиция»; квинта дала три сектора по 120˚, то есть «трин», а кварта разбила круг на четыре «квадратуры». Другими словами, кроме квинты, двум наиболее гармоничным музыкальным интервалам оказались поставлены в соответствие два основных дисгармоничных аспекта – оппозиция и квадратура, что бессмысленно с точки зрения астрологии. Поправить ситуацию попытался последователь Кеплера Рудольф Хаасе, который разбил целый круг на ступени одной октавы. Ситуация улучшилась, но ненамного, так как в этой системе, например, трин (0˚ – 120˚ – 240˚) вместо мажорного трезвучия, каковому ему следовало бы соответствовать и эстетически, и астрологически, на самом деле даёт весьма неприятное трезвучие с увеличенной квинтой (то есть, скажем, вместо C-E-G мы получаем С-E-G#). После Хаасе подобные попытки предпринимались неоднократно и продолжают предприниматься современными астрологами, которые хотят «поверить гармонией» свои представления о планетарных аспектах. Каждая из этих систем, кои перечислять нет ни возможности, ни большого смысла, решает одни проблемы, порождая другие. Иными словами, даже имея хорошо «экспериментально подтверждённый» математический закон, описывающий физические феномены, синтезировать на его основе систему, которая была бы универсальна с точки зрения традиционной науки, т. е., к примеру, давала бы единую гармоническую картину соответствия всех трёх видов музыки, оказывается крайне сложно. О принципиальной возможности такого синтеза можно спорить (хотя подобные споры имеют смысл только с точки зрения профана), однако его результаты во всех областях человеческого знания всегда одинаковы: достаточно отбросить паутину рационализма, окутывающую наше сознание, и мы это увидим с той же лёгкостью, с какой бессловесный младенец отличит мажорное трезвучие от монстров, порождённых системами Хааса или Кеплера – улыбнувшись в первом случае и скривившись от безутешного плача во втором. В отношении же музыки и устройства вселенной, которые нас в данный момент занимают, Платон сказал следующее: «Пожалуй, как глаза наши устремлены к астрономии, так уши – к движению стройных созвучий: эти две науки – словно родные сёстры; по крайней мере, так утверждают пифагорейцы, и мы с тобой, Главкон, согласимся с ними… Те, кого мы воспитываем, пусть даже не пытаются изучать что-нибудь несовершенное и направленное не к той цели, к которой всегда должно быть направлено всё, как мы только что говорили по поводу астрономии. Разве ты не знаешь, что и в отношении гармонии повторяется та же ошибка? Так же как астрономы, люди трудятся там бесплодно: они измеряют и сравнивают воспринимаемые на слух созвучия и звуки».