Вокруг Света - Вокруг Света 2006 №02
Шведы и американцы использовали схожие технологии — графит в смеси с металлом (растворителем углерода) помещался в твердую сжимаемую среду. Необходимое давление (70 000—80 000 атмосфер) создавалось мощным гидравлическим оборудованием. Нагрев осуществлялся до температур 1 600—2 500°С в течение двух минут.
Кристаллизация алмазов происходила за счет того, что расплав металла (железо) при высоком давлении и температуре оказывается ненасыщенным углеродом по отношению к графиту и пересыщенным по отношению к алмазу. При таких условиях термодинамически выгоднее оказывается образование алмаза и растворение графита. Получаемое в настоящее время по данной технологии сырье — это преимущественно алмазные порошки с размером зерна 0,001—0,6 мм (максимально 2 мм) и концентрацией азота более 1019 атомов/см3.
В начале 60-х годов советские ученые Б. Дерягин и Б. Спицын и независимо от них американец В. Эверсол предложили принципиально иной CVD-способ получения алмаза, не требующий использования больших давлений. Суть его состоит в том, что углеродсодержащий газ (например, метан) в смеси с водородом и кислородом разлагают при атмосферном или пониженном давлении, и атомы углерода осаждаются на поверхности затравочных кристаллов алмаза, что приводит к их росту. Однако получаемые кристаллы имели ограничения по качеству.
Несмотря на определенные успехи в деле выращивания алмазов, оставалась одна нерешенная задача — получение крупных монокристаллов ювелирного качества. Лишь в 1967 году Роберт Венторф запатентовал способ («метод температурного градиента»), позволивший решить данную проблему.
Движущей силой кристаллизации алмаза в этом методе является перепад концентрации растворенного в металле углерода, обусловленный разностью температур в реакционном объеме. Источник углерода располагают в наиболее горячей зоне, а алмазную затравку (кристалл алмаза размером около 0,5 мм) в области с более низкой температурой. Металлрастворитель плавится и насыщается углеродом. Однако степень насыщения из-за разницы температур будет неравномерной. Равновесная концентрация углерода в расплаве на границе раздела расплав — источник углерода будет выше, чем на границе раздела расплав — алмазная затравка.
Возникающий градиент концентрации приводит к диффузии углерода от источника к затравочным кристаллам, у которых расплав оказывается перенасыщенным — из него происходит осаждение углерода, вызывающее рост алмазного кристалла-затравки. Это очень остроумный метод, основанный на хорошем понимании того множества процессов, которые происходят в термодинамически неравновесных средах, — в данном случае перепад температур одновременно обеспечивает доставку нужного для роста алмаза углерода и гарантирует его осаждение на затравку.
Тиснумит — крепкий орешек
При огранке и полировке алмазов используют абразивные порошки из того же самого алмаза. Одинаковая твердость абразива и обрабатываемого материала создает определенные проблемы при таких работах. У алмаза, как и у большинства кристаллов, разные грани имеют неодинаковую твердость. Труднее всего поцарапать так называемую грань (111), на которой атомы углерода расположены наиболее плотно.
Именно при обработке поверхностей, параллельных данной кристаллографической грани, у ювелиров и технологов возникают особые трудности. Технологи ищут пути повышения твердости выращиваемых алмазов путем целенаправленного их легирования различными примесями, а также пытаются синтезировать вещества покрепче самого минерала. Уже более 10 лет в научных кругах обсуждаются углеродные материалы, получаемые при высоких давлениях и температурах из молекул фуллерена С60.
Среди синтезируемых кристаллических и аморфных структур особо интересна модификация фуллерита с большой долей «алмазоподобных» межатомных связей — до 80%. Остальная часть химических связей в этом веществе более прочная, чем алмазная, и подобна той, что соединяет атомы в плоскостях графита, в молекуле С60 и стенках углеродных нанотрубок. Структура расположения атомов углерода в этом состоянии обеспечивает изотропность его механических свойств и отсутствие так называемых «легких» плоскостей скалывания, имеющихся у кристаллов алмаза. Как полагают, именно такая «рваная» и сильно напряженная кристаллическая структура и обеспечивает данному материалу твердость выше, чем у знаменитой грани (111) алмаза.
Этот материал, названный «тиснумит», уже нашел применение в сверхпрочных наконечниках зондовых сканирующих микроскопов NanoSkan («Вокруг света» № 6, 2005). Недавно ученые из Германии открыли новый вариант алмазоподобной структуры: агрегированные алмазные наностержни (Aggregated Carbon NanoRods), с плотностью и твердостью на несколько процентов большими, чем у обычного кристаллического алмаза. Ожидается, что такой материал ACNR найдет применение в различных нанотехнологиях.
Открытие Луи
Первоначально людей в алмазе привлекала только его необычайная твердость, и ценился он ниже некоторых других минералов. Лишь в середине XV века придворный ювелир герцога Бургундии Карла Смелого знаменитый Луи ван Беркем придумал первый вариант так называемой бриллиантовой огранки, позволившей достаточно полно выявить блеск и игру цветов алмаза. Яркий блеск ограненного алмаза обусловлен его высоким показателем преломления (2,42), а разноцветная игра — сильной дисперсией (способностью кристалла разлагать белый свет на отдельные спектральные составляющие).
Технологический прорыв
Первые алмазы ювелирного качества с помощью метода температурного градиента были получены в 1970 году в компании General Electric. За одну неделю под давлением 55 000— 60 000 атмосфер и 1 450°С при градиенте в 30 градусов были выращены кристаллы массой 1 карат и длиной 5 мм. Однако рукотворные камни по стоимости производства превосходили природные аналоги.
Постепенно аппаратура и методы получения крупных монокристаллов совершенствовались. В настоящее время можно выделить две наиболее распространенные технологии: выращивание алмаза из углеродсодержащей газовой смеси и кристаллизация в условиях высоких статических давлений и температур. Оба метода позволяют создавать крупные и структурно совершенные кристаллы и управлять их химическим составом.
В последнее время широкое распространение получил метод роста алмаза из газовой фазы, активированной микроволновым излучением. При этом углеродсодержащий газ (например, метан) в смеси с водородом ионизируется, попадая в зону действия излучения, создаваемого сверхвысокочастотным генератором. Из образовавшейся плазмы, содержащей атомарный углерод, происходит его осаждение на подложку, где и растет сам кристалл. В качестве подложки для получения монокристаллов используются пластины из выращенного или природного алмаза. Температуру подложки за счет нагрева плазмой поддерживают в диапазоне 800°— 1 000°C. Параметры процесса должны строго контролироваться, поскольку все они, включая кристаллическое совершенство подложки, ее температуру и соотношение ионов в плазме, сильно влияют на качество растущего алмаза. Большинство получаемых по данной технологии кристаллов имеет коричневатый оттенок и требуют последующей термообработки для улучшения цвета.