Вокруг Света - Вокруг Света 2006 №10
Для того чтобы сегодня человечество смогло удовлетворить свои потребности в энергоресурсах, требуется в год около 10 миллиардов тонн условного топлива. (Теплота сгорания условного топлива принимается равной 7 000 ккал/кг, очень близко к обычному каменному углю). А теперь внимание: если энергию, поставляемую на нашу планету Солнцем за год, перевести в то же условное топливо, то эта цифра составит около 100 триллионов тонн. Это в десять тысяч раз больше, чем нам нужно. Считается, что на Земле запасено 6 триллионов тонн различных углеводородов. Если это так, то содержащуюся в них энергию Солнце отдает планете всего за три недели. И резервы его настолько велики, что светиться так же ярко оно сможет еще около 5 миллиардов лет.
Как взять процент?
Земные зеленые растения и морские водоросли утилизируют примерно 3— 4% поступающей от Солнца энергии. Остальное теряется почти впустую, расходуясь на поддержание комфортного для жизни микроклимата в глубинах океана и на поверхности Земли. И если бы человек смог взять для своего внутреннего потребления хотя бы один процент (то есть 1 триллион тонн того самого условного топлива в год), то это бы решило многие проблемы на века вперед. И теоретически вполне понятно, как именно взять этот процент.
Все началось с Альберта Эйнштейна. Многие помнят, что этот ученый был удостоен в 1921 году Нобелевской премии. Но мало кто знает, что получил он ее не за создание теории относительности, а за объяснение законов внешнего фотоэффекта. Еще в 1905 году он опубликовал работу, в которой, опираясь на гипотезу Планка, описал как именно и в каких количествах кванты света «вышибают» из металла электроны.
Получить электрический ток с помощью фотоэффекта впервые удалось советским физикам в 30-е годы прошлого века. Произошло это в Физико-техническом институте , руководил которым знаменитый академик А.Ф. Иоффе . Правда, КПД тогдашних солнечных сернисто-талиевых элементов еле дотягивал до 1%, то есть в электричество обращался лишь 1% падавшей на элемент энергии, но задел был положен. В 1954 году американцы Пирсон, Фуллер и Чапин запатентовали первый элемент с приемлемым (порядка 6%) КПД. А с 1958 года кремниевые солнечные батареи стали основными источниками электричества на советских и американских космических аппаратах. К середине 70-х годов КПД солнечных элементов приблизился к 10-процентной отметке и... почти на два десятилетия замер на этом рубеже. Для космических кораблей этого вполне хватало, а для наземного использования производство весьма дорогих солнечных батарей (1 кг кремния необходимого качества стоил тогда до 100 долларов) по сравнению с сжиганием дешевой нефти выглядело непозволительной роскошью. Как следствие — большинство исследований по разработке новых технологий в области солнечной энергетики было свернуто, а финансирование оставшихся сильно сокращено.
В начале 90-х годов нынешний лауреат Нобелевской премии академик Жорес Алферов на собрании АН СССР заявил, что если бы на развитие альтернативной энергетики (а солнечная энергетика у нас считается одним из ее видов) было бы потрачено хотя бы 15% из тех средств, что мы вложили в энергетику атомную, то АЭС нам бы сейчас вообще были не нужны. Судя по тому, что даже на тех крохах, которые выделялись «на Солнце», удалось к середине 90-х поднять КПД солнечных элементов до 15, а к началу нового века — до 20%, утверждение академика недалеко от истины.
Особо чистые кварциты
В качестве материала для производства солнечных элементов сегодня используется кремний. Второй по распространенности на Земле, после кислорода, элемент. На кремний приходится более четверти общей массы земной коры. Минус в том, что встречается он в виде окиси — SiO2. Это тот самый песок, которым наполняют детские песочницы и используют при замешивании цементного раствора. Извлечь из него чистый кремний весьма сложно. Настолько сложно, что стоимость силициума (так химики называют кремний), в котором не более 1 грамма примесей на 10 килограммов продукта, сопоставима со стоимостью обогащенного урана, используемого на атомных электростанциях. Запасы кремния превышают запасы урана почти в 100 000 раз, однако хорошего «солнечного» вещества человечество добывает в шесть раз меньше, чем хорошего атомного урана.
Заметим, что извлечь из породы килограмм урана значительно сложнее, чем получить из кварцевого песка килограмм силициума. Поэтому грязный кремний, добываемый электродуговым способом и содержащий более 1% примесей, стоит чуть больше одного доллара за 1 кг и производится мегатоннами в год. Цена на природный уран на порядок выше. После обогащения, когда доля нужного 235-го изотопа повышается до 4,4%, стоимость урана подскакивает до 400 долларов за 1 кг и становится сопоставима с ценой того самого кремния, из которого делают микросхемы и солнечные элементы. Столь, в общем-то, невысокая стоимость ядерного топлива обусловлена и тем, что в создание технологий его добычи и обогащения за последние полстолетия были вложены огромные средства. Кремний же по сию пору в промышленности извлекают и очищают теми же способами, что и в конце 50-х годов прошлого века. А следствие несовершенства технологий — высокая стоимость продукта, большие энергозатраты, экологическая опасность и — низкий выход.
Из тонны кварцевого песка, в котором находится около 500 кг кремния, при самой распространенной на сегодняшний день технологии электродугового извлечения и хлорсилановой очистке получают 50—90 кг солнечного силициума. При этом на получение 1 кг расходуется столько энергии, что «киловаттный» чайник мог бы на ней непрерывно работать в течение 250 часов. Все это тем более странно оттого, что новые, гораздо более удачные технологии давно существуют. Еще в 1974 году немецкая фирма Siemens научилась получать чистый кремний с помощью карботермического цикла. Не будем вдаваться в подробности химического процесса, просто скажем, что в этом случае энергозатраты падают на порядок, а выход продукта увеличивается в 10—15 раз. Соответственно, и стоимость получаемого кремния падает до 5—15 долларов за килограмм.
Здесь-то и кроется особая выгода для России. Для немецкой технологии простой песок уже не подходит, тут нужны так называемые «особо чистые кварциты», самые крупные залежи которых находятся в нашей стране. Кроме того, по мнению тех же специалистов из Siemens, наши кварциты наиболее качественные и их запасов хватит на всех.
Электрический бутерброд