Вокруг Света - Вокруг Света 2006 №04
В трехмерном пространстве аналогичную процедуру можно проделать с кубом. Если отождествить его противоположные грани, то образуется трехмерный тор. Если посмотреть изнутри такого куба на окружающее пространство, то можно увидеть бесконечный мир, состоящий из копий его одной-единственной и уникальной (не повторяющейся) части, объем которой вполне конечен. В таком мире нет каких-либо границ, но есть три выделенных направления, параллельных ребрам исходного куба, вдоль которых наблюдаются периодические ряды исходных предметов. Эта картина очень похожа на то, что можно увидеть внутри кубика с зеркальными стенками. Правда, взглянув на любую из его граней, обитатель такого мира увидит свой затылок, а не лицо, как в земной комнате смеха. Более правильной моделью будет комната, оборудованная 6 телекамерами и 6 плоскими ЖК-мониторами, на которые выводится изображение, снимаемое расположенной напротив кинокамерой. В этой модели видимый мир замыкается сам на себя благодаря выходу в иное телевизионное измерение.
Описанная выше картина подавления низкочастотных гармоник верна, если время, за которое свет пересекает исходный объем, достаточно мало, то есть если размеры начального тела малы по сравнению с космологическими масштабами. Если же размеры доступной для наблюдений части Вселенной (так называемого горизонта Вселенной) оказываются меньше размеров исходного топологического объема, то ситуация не будет ничем отличаться от той, что мы увидим в обычной бесконечной эйнштейновской Вселенной, и никаких аномалий в спектре реликтового излучения наблюдаться не будет.
Максимально возможный пространственный масштаб в таком кубическом мире определяется размерами исходного тела — расстояние между любыми двумя телами не может превышать половины главной диагонали исходного куба. Свет, идущий к нам от границы рекомбинации, может по дороге несколько раз пересечь исходный куб, как бы отражаясь в его зеркальных стенках, из-за этого угловая структура излучения искажается и низкочастотные флуктуации становятся высокочастотными. В результате чем меньше исходный объем, тем сильнее подавление низших крупномасштабных угловых флуктуаций, а значит, изучая реликтовый фон, можно оценить размеры нашей Вселенной.
Трехмерные мозаики
Плоскую топологически сложную трехмерную Вселенную можно построить только на основе кубов, параллелепипедов и шестигранных призм. В случае искривленного пространства такими свойствами обладает более широкий класс фигур. При этом наиболее хорошо полученные в эксперименте WMAP угловые спектры согласуются с моделью Вселенной, имеющей форму додекаэдра. Этот правильный многогранник, имеющий 12 пятиугольных граней, напоминает футбольный мячик, сшитый из пятиугольных лоскутков. Оказывается, что в пространстве с небольшой положительной кривизной правильными додекаэдрами можно без дыр и взаимных пересечений заполнить все пространство. При определенном соотношении между размером додекаэдра и кривизной для этого надо 120 сферических додекаэдров. Более того, эту сложную структуру из сотни «мячиков» можно свести к топологически эквивалентной, состоящей всего из одного-единственного додекаэдра, у которого отождествлены повернутые на 180 градусов противоположные грани.
Вселенная, образованная из такого додекаэдра, обладает рядом интересных свойств: в ней нет выделенных направлений, и она лучше большинства других моделей описывает величину низших угловых гармоник реликтового фона. Такая картина возникает только в замкнутом мире с отношением действительной плотности вещества к критической 1,013, что попадает в интервал значений, допустимых сегодняшними наблюдениями (1,02±0,02).
Для рядового жителя Земли все эти топологические хитросплетения на первый взгляд не имеют особого значения. А вот для физиков и философов — совсем другое дело. Как для мировоззрения в целом, так и для единой теории, объясняющей строение нашего мира, эта гипотеза представляет большой интерес. Поэтому, обнаружив аномалии в спектре реликта, ученые стали искать другие факты, способные подтвердить или опровергнуть предложенную топологическую теорию.
Звучащая плазма
На спектре флуктуаций реликтового фона красной линией обозначены предсказания теоретической модели. Серый коридор вокруг нее — допустимые отклонения, а черные точки — результаты наблюдений. Большая часть данных получена в эксперименте WMAP, и только для самых высоких гармоник добавлены результаты исследований CBI (баллонные) и ACBAR (наземные антарктические). На нормированном графике углового спектра флуктуаций реликтового излучения видно несколько максимумов. Это так называемые «акустические пики», или «Сахаровские осцилляции». Их существование было теоретически предсказано Андреем Сахаровым. Эти пики обусловлены эффектом Доплера и вызваны движением плазмы в момент рекомбинации. Максимальная амплитуда колебаний приходится на размер причинно-связанной области (звукового горизонта) в момент рекомбинации. На меньших масштабах плазменные колебания были ослаблены фотонной вязкостью, а на больших — возмущения не зависели друг от друга и не были сфазированы. Поэтому максимум флуктуаций, наблюдаемых в современную эпоху, приходится на углы, под которыми сегодня виден звуковой горизонт, то есть область первичной плазмы, жившая единой жизнью в момент рекомбинации. Точное положение максимума зависит от отношения полной плотности Вселенной к критической. Наблюдения показывают, что первый, самый высокий пик расположен примерно на 200-й гармонике, что по теории с высокой точностью соответствует плоской Евклидовой Вселенной. Очень много информации о космологических параметрах содержится во втором и последующих акустических пиках. Само их существование отражает факт «сфазированности» акустических колебаний в плазме в эпоху рекомбинации. Если бы такой связи не было, то наблюдался бы только первый пик, а флуктуации на всех меньших масштабах были бы равновероятными. Но для того чтобы подобная причинная связь колебаний в разных масштабах могла возникнуть, эти (очень сильно удаленные друг от друга) области должны были иметь возможность взаимодействовать друг с другом. Именно такая ситуация естественным образом возникает в модели инфляционной Вселенной, а уверенное обнаружение второго и следующих пиков в угловом спектре флуктуаций реликтового излучения является одним из наиболее весомых подтверждений этого сценария. Наблюдения реликтового излучения велись в области, близкой к максимуму теплового спектра. Для температуры 3K он находится на длине волны радиоизлучения 1мм. WMAP вел свои наблюдения на чуть более длинных волнах: от 3 мм до 1,5 см. Этот диапазон достаточно близок к максимуму, и в нем ниже шумы от звезд нашей Галактики.