Этот обыкновенный загадочный дельфин - Супин Александр Яковлевич
Конечно, универсальное зрение, пригодное для использования и под водой, и над водой, дельфину очень полезно — тут вопроса нет. Вопрос в том, как ему это удается. Ведь зрение под водой и в воздухе требует совершенно разной конструкции глаза.
Каждый, кому доводилось нырять, прекрасно знает: если не надеть специальную маску для подводного плавания, то под водой мы видим очень плохо. Все предметы сильно размыты, как будто не в фокусе; только поднеся предмет к самому лицу, можно его рассмотреть и узнать.
Причина этого очень проста. Чтобы предмет был хорошо виден, оптическая система глаза, как объектив фотоаппарата, должна создать изображение этого предмета на задней стенке глаза, где расположена светочувствительная сетчатая оболочка — сетчатка. Как и объектив фотоаппарата, оптическая система глаза состоит из нескольких частей, играющих роль отдельных линз, и самая первая из этих линз — это наружная выпуклая поверхность прозрачной роговицы нашего глаза. Именно на этой поверхности лучи света впервые переходят из воздуха в среду, как говорят оптики, с большей оптической плотностью. А при переходе из среды с одной оптической плотностью в среду с другой плотностью как раз и происходит преломление света на выпуклой поверхности, необходимое для получения сфокусированного изображения. Находящийся позади роговицы чечевицеобразный хрусталик хоть и очень похож на настоящую линзу-объектив, но он лишь дополняет действие основной — роговичной линзы.
Но степень преломления света на границе, разделяющей две среды, зависит от того, насколько различаются оптические плотности этих сред. У воздуха оптическая плотность намного меньше, чем у жидкости, заполняющей глаз; поэтому линза на границе «воздух — внутриглазная жидкость» действует очень эффективно. Совсем другое дело, если перед глазом находится не воздух, а вода. У воды оптическая плотность практически такая же, как у внутриглазной жидкости, то есть фактически никакой границы раздела для световых лучей здесь нет, и они переходят из воды через тонкую роговицу во внутриглазную среду, попросту «не замечая» поверхности глаза, а значит, и не меняя своего направления. Так что линза на поверхности глаза перестает действовать — важнейший элемент оптической системы глаза выпадает. А одного только хрусталика недостаточно, чтобы как следует сфокусировать изображение на сетчатке. Он хотя и выпуклый, как настоящая линза, но находится-то не в воздухе, а в жидкости, оптическая плотность которой лишь ненамного меньше, чем плотность ткани хрусталика. Поэтому преломляющая способность хрусталика не так уж велика, и без роговичной линзы он с задачей не справляется. Неудивительно, что при таком грубом нарушении оптики глаза изображение становится нерезким, размытым. Поэтому мы так плохо видим под водой.
Ну а как же водные животные, например рыбы, — они тоже не могут хорошо видеть под водой, как и мы? Нет, у них-то проблемы отсутствуют. Природа позаботилась о том, чтобы они все видели как следует. Для этого понадобилось всего лишь сделать намного более толстым и выпуклым хрусталик: у рыб он имеет вид не относительно тонкой линзы, как у нас, а сильно выпуклого шарика. Преломляющая способность такой сильно выпуклой линзы даже в жидкости достаточна, чтобы получить хорошее изображение на сетчатке и при отсутствии дополнительного преломления света на роговице. Но зато животное с такими глазами не сможет хорошо видеть в воздухе: тут к преломляющей способности хрусталика добавится дополнительное преломление на выпуклой поверхности роговицы. Теперь уже преломляющая способность оптики глаза окажется чрезмерной, и хорошего изображения на сетчатке опять не получится.
Выходит, что если глаз хорошо приспособлен для зрения в воздухе, то он не может и не должен так же точно видеть под водой, а если глаз хорошо видит под водой, то плохо видит в воздухе. Вроде бы так и должно быть: вода и воздух — среды с довольно-таки разными оптическими свойствами, стало быть, и требования к оптике глаза они предъявляют совершенно разные. Либо одно, либо другое. Такой вывод вполне логичен и соответствует основным законам оптики.
У дельфинов хрусталик глаза сильно выпуклый — этим он напоминает хрусталик рыб. Значит, его глаз приспособлен для подводного зрения. Действительно, расчеты показывают, что под водой, то есть при отсутствии преломления света на роговице, хрусталик глаза дельфина обеспечивает как раз такое преломление света, которое необходимо для получения хорошо сфокусированного изображения на сетчатке. А что же получается в воздухе? Для специалистов-оптиков не составило труда подсчитать, как должно измениться зрение дельфина, когда в воздухе добавляется эффект роговичной линзы. При той кривизне, которую имеет центральная часть роговицы дельфина, глаз должен быть близорук на 20–25 диоптрий! Тот, кто сам страдает близорукостью и носит очки, может себе представить, что это такое. Даже при близорукости в 3–5 диоптрий очень трудно обходиться в повседневной жизни без очков, а в 10 диоптрий — это уже очень серьезная болезнь. Но близорукость в 25 диоптрий, да еще без очков (а никто и никогда еще не видел дельфина в очках) — это практически полная потеря возможности различать какие-либо предметы.
Но дельфины, видимо, ничего не знают ни о нашем выводе, ни о результатах наших вычислений, поскольку ухитряются прекрасно видеть и в воздухе, и под водой. Как же это им удается, уж не вопреки ли законам оптики? Нет, конечно. Законы оптики, как и другие законы природы, дельфины не отменили. Просто они умело их используют.
Вспомним, как мы сами поступаем, когда ныряем под воду и при этом мечтаем увидеть ясно подводный мир. Очень просто: для этого мы надеваем нехитрое приспособление — маску для ныряния, и наши глаза немедленно приобретают способность четко видеть. Но у маски для ныряния есть еще одно замечательное свойство, к которому те, кто ею пользуется, привыкли и обычно не обращают на него внимания: позволяя хорошо видеть в воде, маска не лишает нас и способности отчетливо видеть в воздухе! Когда пловец выныривает и поднимает голову над водой, ему совсем не нужно снимать маску, чтобы осмотреться вокруг. С маской мы одинаково хорошо видим и в воздухе, и под водой.
Чтобы понять, почему это возможно, разберемся в том, как действует маска ныряльщика. Исправляет наше зрение, конечно, не сама маска — кусок резины и плоское стеклышко. Все дело в том пузыре воздуха, который остается под маской, между водой и нашими глазами, точнее, в форме этого пузыря. Одна сторона воздушного пузыря — та, которая обращена к выпуклой роговице глаза, — искривленная, а другая — та, которая ограничивается стеклом маски, — плоская. В этой плоской стороне воздушного пузыря весь секрет.