Нейтронные звезды. Как понять зомби из космоса - Катя Москвич
10 G. Ashton et al. Rotational Evolution of the Vela Pulsar during the 2016 Glitch. Nature Astronomy. 3 (2019): 1143–1148.
11 M. Riordan. The Discovery of Quarks. Stanford Linear Accelerator Center, Stanford University, Apr. 1992. www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-5724.pdf
12 J. M. Lattimer. Neutron Star Structure and the Equation of State. Astrophysical Journal. 550, no. 1 (2001).
13 H. T. Cromartie et al. Relativistic Shapiro Delay Measurements.
14 Our History: A Passion for Discovery, a History of Scientific Achievement. Brookhaven National Laboratory. www.bnl.gov/about/history
15 FAIR – The Universe in the Lab. Facility for Antiproton and Ion Research in Europe. https://fair-center.eu/
16 Shapiro Delay. COSMOS – The SAO Encyclopedia of Astronomy. http://astronomy.swin.edu.au/cosmos/S/Shapiro+Delay
17 T. Damour. 1974: The Discovery of the First Binary Pulsar. ArXivpre-print service, Feb. 17, 2015. https://arxiv.org/pdf/1411.3930.pdf
18 M. Kramer. Pulsars and General Relativity. Max Planck Institute for Radio Astronomy, Sept. 15, 2010. www.mpifr-bonn.mpg.de/1038767/Kramer_pulsars.pdf
19 M. C. Miller et al. PSR J0030 + 0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophysical Journal Letters. 887, no. 1 (Dec. 12, 2019); T. E. Riley et al. A NICER View of PSR J0030 + 0451: Millisecond Pulsar Parameter Estimation. Astrophysical Journal Letters. 887, no. 1 (Dec. 12, 2019).
20 The Neutron Star Interior Composition Explorer Mission. Goddard Space Flight Center, NASA. https://heasarc.gsfc.nasa.gov/docs/nicer
21 A. Watts. Constraining the Neutron Star Equation of State Using Pulse Profile Modelling. AIP Conference Proceedings. 2127, no. 1 (2019).
22 K. Nandra et al. Athena: The Advanced Telescope for High-Energy Astrophysics. European Space Agency, 2013. www.cosmos.esa.int/documents/400752/400864/Athena+Mission+Proposal/18b4a058-5d43-4065‑b135-7fe651307c46
23 Using Gravitational Wave Observations to Learn about Ultra-Dense Matter. LIGO, Aug. 12, 2019. www.ligo.org/science/Publication-GW170817ModelSelection/index.php
Глава 6. Как нейтронные звезды убивают теории темной материи
1 Making (Galactic) History with Big Data: First Global Age Map of the Milky Way. News release, Max Planck Institute for Astronomy, Jan. 8, 2016. www.mpia.de/news/science/2016–01‑milky-way-agemap
2 South Africa’s MeerKAT Telescope Discovers Giant Radio ‘Bubbles’ at Centre of Milky Way. News release, SKA Telescope, Sept. 12, 2019. www.skatelescope.org/news/MeerKAT-discovers-giant-radio-bubbles
3 Dark Energy, Dark Matter. NASA, Dec. 8, 2019. https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy
4 G. Bertone, D. Hooper. A History of Dark Matter. ArXiv preprint service, May 24, 2016. https://arxiv.org/pdf/1605.04909.pdf
5 T. Linden, B. J. Buckman. Pulsar TeV Halos Explain the Diffuse TeV Excess Observed by Milagro. Physical Review Letters. 120, no. 121101 (Mar. 23, 2018).
6 Fermi Bubbles. Goddard Space Flight Center, NASA. https://fermi.gsfc.nasa.gov/science/constellations/pages/bubbles.html
7 L. Goodenough, D. Hooper. Possible Evidence for Dark Matter Annihilation in the Inner Milky Way from the Fermi Gamma Ray Space Telescope. ArXiv pre-print service, Nov. 11, 2009. https://arxiv.org/pdf/0910.2998.pdf
8 T. R. Slatyer et al. The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Case for Annihilating Dark Matter. Physics of the Dark Universe. 12 (June 2016): 1–23.
9 C. Moskowitz. Dark Matter May Be Destroying Itself in Milky Way’s Core. Nature News. Apr. 8, 2014. www.nature.com/news/darkmatter-may-be-destroying-itself-in-milky-way-s-core-1.15018
10 National Radio Quiet Zone. National Radio Astronomy Observatory (NRAO). https://science.nrao.edu/facilities/gbt/interference-protection/nrqz
11 Green Bank Observatory. GBO website. https://greenbankobservatory.org
12 R. Lynch. The Hunt for New Pulsars with the Green Bank Telescope. ArXiv pre-print service, Mar. 21, 2013. https://arxiv.org/pdf/1303.5316.pdf
13 Pulsar Dispersion Measure. COSMOS – The SAO Encyclopedia of Astronomy. https://astronomy.swin.edu.au/cms/astro/cosmos/p/Pulsar+Dispersion+Measure
14 C. Weniger et al. Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess. Physical Review Letters. 116, no. 051102 (Feb. 4, 2016); S. K. Lee et al. Evidence for Unresolved Gamma-Ray Point Sources in the Inner Galaxy. Physical Review Letters. 116, no. 051103 (Feb. 4, 2016).
15 R. K. Leane, T. R. Slatyer. Dark Matter Strikes Back at the Galactic Center. ArXiv pre-print service, Apr. 19, 2019. https://arxiv.org/pdf/1904.08430.pdf
Глава 7. Как пульсары обзаводятся планетами
1 E. Tasker. The Planet Factory: Exoplanets and the Search for a Second Earth. New York: Bloomsbury, 2017. [Э. Таскер. Фабрика планет: экзопланеты и поиски второй Земли. М.: АНФ, 2019.]
2 Telescope Description. Arecibo Observatory website. www.naic.edu/ao/telescope-description
3 C. DuBois. Planets from the Very Start. PennStateUniversity, Sept. 1, 1997. https://news.psu.edu/story/140842/1997/09/01/research/planetsvery-start
4 A. Wolszczan, D. A. Frail. A Planetary System around the Millisecond Pulsar PSR1257 + 12. Nature. 355, no. 6356 (1992): 145–147.
Глава 8. Гигантские научные инструменты Вселенной
1 W. Becker. Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection. Space Science Reviews. 214 (Feb. 2018): 30.
2 C. M. F. Mingarelli. Probing Supermassive Black Hole Binaries with Pulsar Timing. Nature Astronomy. 3 (2019): 8–10.
3 South Pole Telescope. University of Chicago, Dec. 9, 2019. https://pole.uchicago.edu/spt
4 Astronomers Capture First Image of a Black Hole. News release, European Southern Observatory, Apr. 10, 2019. www.eso.org/public/unitedkingdom/news/eso1907
5 Event Horizon Telescope. https://eventhorizontelescope.org
6 A. M. Ghez et al. The Accelerations of Stars Orbiting the Milky Way’s Central Black Hole. Nature. 407, no. 6802 (Sept. 2000): 349–351.
7 Supermassive Black Hole Sagittarius A*. NASA, Aug. 29, 2013. www.nasa.gov/mission_pages/chandra/multimedia/black-hole-SagittariusA.html
8 Event Horizon Telescope.
9 Supermassive Black Hole. COSMOS – The SAO Encyclopedia of Astronomy. http://astronomy.swin.edu.au/cosmos/S/Supermassive+Black+Hole
10 R. Pfeifle et al. A Triple AGN in a Mid-Infrared Selected Late Stage Galaxy Merger. ArXiv pre-print service, Aug. 7, 2019. https://iopscience.iop.org/article/10.3847/1538–4357/ab3a9b
11 Princeton Scientists Spot Two Supermassive Black Holes on Collision Course with Each Other. News release, Princeton University, July
10, 2019. www.princeton.edu/news/2019/07/10/princeton-scientistsspot-two-supermassive-black-holes-collision-course-each-other
12 G. Hobbs. Gravitational Wave Research Using Pulsar Timing Arrays. National Science Review. 4, no. 5 (Dec. 19, 2017): 707–717.
13 H. T. Cromartie et al. Relativistic Shapiro Delay Measurements.
14 Gravitational Wave Mission Selected, Planet-Hunting Mission Moves Forward. European Space Agency, June 20, 2017. https://sci.esa.int/web/cosmic-vision/-/59243‑gravitational-wave-mission-selectedplanet-hunting-mission-moves-forward
15 M. Bailes. MeerTime – the MeerKAT Key Science Program on Pulsar Timing. ArXiv pre-print service, Mar. 18, 2018. https://arxiv.org/abs/1803.07424
16 D. Goldberg. Why Can’t Einstein and Quantum Mechanics Get Along? Gizmodo, Sept. 8, 2013. https://io9.gizmodo.com/why-canteinstein-and-quantum-mechanics-get-along-799561829
17 E. Siegel. Dark Matter Winners and Losers in the Aftermath of LIGO. Medium, Dec. 19, 2017. https://medium.com/starts-with-a-bang/dark-matter-winners-and-losers-in-the-aftermath-of-ligo-f34ab04fcb
18 D. Perrodin. Radio