Шесть невозможностей. Загадки квантового мира - Джон Гриббин
Никакие знакомые концепции невозможно сплести вокруг электрона… нечто нам неизвестное делает что-то непонятное. Такая формулировка не особенно похожа на вразумительную теорию. Мне уже случалось где-то читать нечто подобное. Кажется, это звучало так —
ХЛИВКИЕ ШОРЬКИ
ПЫРЯЛИСЬ ПО НАВЕ[3].
Возможно, нам и вправду лучше было бы думать о хливких шорьках, которые пырялись по наве в эксперименте с двумя отверстиями, чем об электронах, которые ведут себя как волны и как частицы. Чтобы не загромождать изложение, я не буду всякий раз предварять оговоркой «как если бы» события или объекты квантового мира, о которых заходит речь. Считайте, что она стоит в нужном месте.
В самом деле, «пыряние» могло бы оказаться лучшим термином, чем тот, что обычно используется для обозначения одного фундаментального квантового свойства электронов и других частиц — как правило, его именуют «спином», или, попросту говоря, вращением. Конечно, спин — это уютное привычное понятие, такое же, как волна или частица, — и ровно настолько же обманчивое. С одной стороны, уравнения говорят нам, что любой квантовый объект должен провернуться дважды, чтобы вернуться в первоначальное положение, что бы это ни значило в физическом смысле (я определенно не в состоянии представить себе это событие). Но спин — полезное свойство при обсуждении многих квантовых явлений, поскольку он может принимать два значения; их можно представить направленными «вверх» и «вниз» и обозначить как положительный и отрицательный спин. Это упрощает рассмотрение многих вопросов, которое в противном случае могло бы чудовищно усложниться.
Возьмем, например, вероятность. В контекст квантовой механики идею вероятности на прочном математическом основании ввел немецкий физик Макс Борн. Не углубляясь в математику, мы можем оценить важность этой идеи на примере спина электрона (или пыряния шорьков, как, возможно, предпочел бы сказать Эддингтон). С помощью уравнений квантовой механики можно описать мысленный эксперимент, в котором атом испускает электрон, улетающий в пространство (в реальности это процесс, называемый бета-распадом). Электрон обладает спином — положительным либо отрицательным. Определить это заранее нельзя, шансы равны — 50/50. Проведя эксперимент тысячу раз (или одновременно с тысячей атомов), мы насчитаем 500 электронов (возможно, чуть больше или чуть меньше) с положительным спином и 500 — с отрицательным. Можно поймать единичный электрон и измерить его спин, до этого момента сказать, каким этот спин окажется, невозможно.
Пока ничего удивительного. Но Эйнштейн понял, что уравнения квантовой теории предсказывают нечто удивительное, когда речь идет о двух электронах, разлетающихся в противоположных направлениях[4]. В определенных обстоятельствах здесь применим закон сохранения, согласно которому эти электроны должны обладать противоположными спинами (один положительным, другой — отрицательным, в результате они друг друга компенсируют). Однако уравнения показывают: когда электроны вылетают из атома, у них нет определенного спина. Они находятся в так называемой суперпозиции — смеси состояний «положительный спин» и «отрицательный спин». Электрон «решает», какое состояние принять, лишь когда взаимодействует с чем-то еще. Эйнштейн указал на следующее: если два электрона должны все время иметь противоположные спины, то в момент, когда первый электрон «решает», что его спин будет иметь положительное значение, второй электрон обязан обзавестись отрицательным спином, как бы далеко друг от друга они ни находились. Эйнштейн назвал это «жутким дальнодействием», поскольку на первый взгляд создавалось впечатление, будто электроны должны поддерживать между собой связь со сверхсветовой скоростью, что исключает специальная теория относительности.
Идею Эйнштейна сумели развить и изложить в форме статьи Борис Подольский и Натан Розен, она вышла в 1933 г. (некоторые, правда, считают, что соавторы скорее помешали, чем помогли Эйнштейну, поскольку статья написана плохо, с нечеткими формулировками). По инициалам авторов она известна как статья ЭПР, а ее центральная идея — как парадокс ЭПР, хотя это вовсе не парадокс, а всего лишь вопрос, ставящий в тупик. В 1935 г., представляя другой знаменитый парадокс, Шрёдингер назвал способ, посредством которого две квантовые системы оказываются соединены жутким дальнодействием, «запутанностью». В статье ЭПР констатировалось, что квантовая теория ставит реальность [свойств второй системы] «в зависимость от процесса измерения, производимого над первой системой, хотя этот процесс никоим образом не влияет на вторую систему. Никакое разумное определение реальности не должно, казалось бы, допускать этого»[5]. Авторы пришли к выводу: «Мы вынуждены заключить, что квантово-механическое описание физической реальности… не является полным»[6]. Эйнштейн считал, что должен существовать некий фундаментальный механизм, известный как скрытые переменные, благодаря ему электроны, разлетаясь в разные стороны от источника, лишены возможности выбирать значение спина — положительное или отрицательное. Все уже предопределено.
Выход статьи ЭПР вызвал среди специалистов яростные споры, но настоящий прорыв в понимании запутанности и ее следствий произошел лишь три десятилетия спустя, и в значительной степени потому, что один из виднейших математиков своего времени Джон фон Нейман сделал ошибку в важной книге по квантовой механике, увидевшей свет в 1932 г. — до выхода статьи ЭПР. В этой книге фон Нейман привел «доказательство» того, что теории со скрытыми переменными не в состоянии объяснить поведение квантового мира, что такие теории невозможны. Его научный авторитет был так высок, что все ему поверили, не проверяя математических выкладок. Точнее, почти все. Молодая немецкая исследовательница Грета Герман обнаружила ошибку в его рассуждениях и написала об этом в 1935 г. — в философском журнале, который физики не читали. Специалисты открыли для себя эту публикацию намного позже. В Утешении 2 я расскажу, что эта ошибка не остановила полностью работу над «невозможными» теориями со скрытыми переменными, но только в середине 1960-х один физик подробно разобрал аргументы фон Неймана и показал, что в них было не так. Воскрешение скрытых переменных, возможно, не понравилось бы Эйнштейну, поскольку тот же физик доказал, что все подобные теории должны включать в себя то самое жуткое дальнодействие, которое Эйнштейн очень не любил и которое на более формальном языке называют нелокальностью.
Джон Белл.
Legion-Media.
Этим физиком был Джон Белл, который, взяв отпуск в ЦЕРНе (Европейская организация по ядерным исследованиям), на несколько месяцев уехал в США — поработать над тем, что покажется ему интересным. Две статьи, ставшие результатом этого перерыва в повседневной работе, изменили «всем известные» факты о квантовом мире существеннее, чем что-либо еще со времен