Вероятности и неприятности. Математика повседневной жизни - Сергей Борисович Самойленко
Несправедливость, к которой приводит парадокс инспектора, демонстрирует кривая Лоренца (рис. 6.21). Интересно, что она в случае экспоненциального распределения одинакова для любых интенсивностей. Таким образом, для всех пуассоновских процессов верно утверждение: половина общего времени наблюдения приходится на 20 % случаев, когда это очередное событие задерживается. К этому выводу можно прийти, увидев, что на кривой Лоренца 50 % общего времени приходится на 80 % интервалов, в оставшиеся 20 % попали длинные интервалы, поглощающие половину времени ожидания. Коэффициент Джини для экспоненциального распределения равен в точности 1/2.
Рис. 6.21. Кривая Лоренца для экспоненциального распределения не зависит от его параметра (интенсивности)
Глава 7. Прелести чужой очереди
Я размышляю о законах подлости, стоя в аэропорту в очереди на регистрацию пассажиров и оформление багажа. Хвост длинный, люди разные и заметные со всеми своими сумками, детьми или клетками. Сзади слышу ворчание: «Как обычно, наша очередь тормозит. Вон, гляди, тот усатый в кепке наравне с нами стоял, а теперь вон где… Вот ведь закон подлости!» Этот закон зовется наблюдением Этторе:
Соседняя очередь всегда движется быстрее.Что же это — психологический эффект или причуды математики?
Еще раз про пуассоновский процесс
Мы уже достаточно знаем о случайных процессах, чтобы немного проанализировать очередь, в которой стоим. За неимением других данных, разумно предположить, что выход из нее происходит по-пуассоновски: пассажиры подходят к стойке регистрации и проводят там какое-то время, не зависящее от времени обработки данных других пассажиров. Перемещение наблюдателя, стоящего в очереди, будет иметь вид монотонно изменяющейся ступенчатой линии, с одинаковыми шагами через случайные промежутки времени, подчиненные экспоненциальному распределению. Пара реализаций примеров пуассоновских процессов с одинаковой интенсивностью приведена на рис. 7.1. Обычно пуассоновский процесс накапливает события, и его изображение выглядит как «лесенка», растущая со временем. Но, стоя в очереди, мы заинтересованы в ее скорейшем уменьшении, так что шаги нашего процесса ведут вниз.
Рис. 7.1. Перемещения двух очередей как пуассоновских процессов с равной интенсивностью. То одна, то другая «вырывается вперед» на какое-то время
Разница двух одинаковых пуассоновских процессов — а именно ее наблюдает человек, скучающий в хвосте и исследующий соседнюю очередь, — представляет собой своеобразное случайное блуждание. В описанном нами случае величина отставания одной очереди от другой подчиняется распределению Скеллама. Для двух одинаковых очередей, пропускающих μ человек в единицу времени, вероятность отставания одной из них на k шагов равна:
P(k) = e-2μ I|k|(2μ),
где Ik(x) — встречавшаяся нам в предыдущей главе модифицированная функция Бесселя. Она возникла здесь не из-за круговой симметрии, а как результат сложения двух случайных величин, подчиняющихся распределению Пуассона.
Распределение Скеллама имеет симметричный колоколообразный вид (рис. 7.2), практически не отличимый от биномиального распределения. А раз так, мы уже готовы сделать некоторые качественные выводы, основываясь на опыте, полученном в предыдущей главе.
Рис. 7.2. Вероятность накопления разницы между двумя одинаковыми очередями со средней скоростью 5 шагов в минуту
Во-первых, расстояние между одновременно вставшими в одинаковые очереди людьми будет то увеличиваться, то уменьшаться, при этом станут образовываться характерные меандры с постоянно меняющейся длительностью. Во-вторых, из-за самоподобия случайного блуждания длительность меандров — как для коротких очередей, так и для длинных — окажется соизмеримой со временем стояния в очереди, и, значит, они будут заметны. А меандры — уже повод для недовольства. В-третьих, заранее неизвестно, какая очередь пройдет быстрее, ведь случайное блуждание равновероятно уходит как вверх, так и вниз. И наконец, четвертое заключение: очереди движутся независимо, то и дело опережая и нагоняя друг друга, но в среднем одинаково, и ожидаемая разница между ними стремится к нулю, однако разброс вокруг среднего со временем растет пропорционально квадратному корню из времени.
Выходит, нет никаких подлых штучек злодейки-судьбы, а есть только честное случайное блуждание. Правда, если нам не повезло и мы оказались во временно отстающей очереди, то мы в ней проведем больше времени и, согласно закону велосипедиста, у нас будет больше возможностей посетовать на судьбу! А теперь, внимание, хорошие новости: в любой выбранный интервал времени тех, кому повезет попасть в быструю очередь, будет больше, чем невезунчиков, ведь быстрая очередь может пропустить больше людей! Но, увы, это ничуть не утешит того, кто надолго застрял в хвосте.
Теория для заскучавших в коридоре
Тем и хороша математика, что она способна сделать увлекательным даже стояние в очереди. Например, можно прикинуть, сколько еще ждать своей очереди, но для этого, как ни странно, надо посмотреть не вперед, а назад, на растущий хвост. Если подождать какое-то время, скажем 10 минут, и посчитать, сколько человек выстроилось за вами, то, разделив количество людей перед вами на полученное число, вы вычислите среднее время ожидания в десятках минут. Например, пусть за десять минут хвост вырос на пять человек; если в момент подсчета перед вами семь человек, то ожидаемое время ожидания составит 10 × 7/5 = 14 минут. Понятно, что эта оценка будет весьма грубой, но любопытно, что она действительно соответствует среднему времени ожидания. Об этом говорит теорема Литтла — один из самых ранних и самых общих результатов теории очередей, известной в России как теория массового обслуживания.
Теория очередей появилась в самом начале XX века, с первых работ датского математика Агнера Эрланга (1878–1929), который занимался зарождающейся областью телекоммуникаций. За сотню лет результаты исследований Эрланга прочно вошли в нашу жизнь — настолько, что возникает ощущение, будто мы вошли в мир телекоммуникаций. Несколько позже большой вклад в развитие этой науки внес советский математик Александр Яковлевич Хинчин (1894–1959), который вместе с Андреем Николаевичем Колмогоровым (1903–1987) заложил основы современной теории