Kniga-Online.club
» » » » Хранители времени. Реконструкция истории Вселенной атом за атомом - Дэвид Хелфанд

Хранители времени. Реконструкция истории Вселенной атом за атомом - Дэвид Хелфанд

Читать бесплатно Хранители времени. Реконструкция истории Вселенной атом за атомом - Дэвид Хелфанд. Жанр: Зарубежная образовательная литература / Физика год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
В плотной среде атом может сотни раз в секунду подвергаться ударам со стороны своих соседей, а любой случайный удар способен вбить электрон обратно в основное состояние. В этом случае по-прежнему следует учитывать те самые 10,2 эВ энергии: она переходит в нанесшую удар частицу, благодаря чему происходит сверхупругое столкновение, в котором отлетающая частица обретает энергию, забрав ее у электрона.

У атома Водорода много уровней (в принципе, их количество бесконечно), и каждый отделен от других точно определенным количеством энергии. Переходы вверх и вниз между каждой парой уровней возможны (хотя некоторые более вероятны, нежели другие, и продолжительность существования на каждом возбужденном уровне чрезвычайно различается), поэтому энергий, при обладании которыми фотоны и соударяющиеся частицы могут создать условия, вызывающие перескок электрона, очень много, и они весьма разнообразны.

В более сложных атомах с большим количеством электронов допускается еще больше переходов. Внутренние уровни атомов с высоким атомным номером, таких как Уран, имеют очень прочные связи, поскольку каждый из десятков протонов в ядре привлекает ближайшие электроны, вследствие чего энергии связи превышают значения в тысячи электронвольт. Самые внешние электроны у большинства атомов удерживаются, в некоторой степени, столь же прочно, как электрон в атоме Водорода, поскольку для электрона, расположенного дальше всего от центра, любой атом в каком-то смысле подобен Водороду – каждый из электронов, находящихся ближе к ядру, нейтрализует один положительный заряд, так что одинокий внешний электрон эффективно воздействует лишь на один такой заряд. Например, в атоме Урана самые близкие к ядру электроны обладают энергией связи 115 000 эВ, а у самого дальнего от ядра (расположенного на 6d-уровне) энергия связи составляет 16,8 эВ – она лишь на 24 % больше, чем у единственного электрона в атоме Водорода.

Энергия связи ядра

В главе 3 мы говорили о том, как в атомном ядре, где проявляются все четыре фундаментальные силы, притяжение, рожденное сильным ядерным взаимодействием, преодолевает электростатическое отталкивание положительно заряженных протонов, втиснутых в тесное пространство, создавая тем самым сердце атома. Стабильность атомного ядра можно определить, если измерить интенсивность этой притягивающей силы, обусловленной сильным взаимодействием, вычесть отталкивающую электрическую силу и найти чистую энергию, с которой частицы притягиваются друг к другу, – энергию связи ядра. Она представляет собой то количество энергии, которое потребовалось бы вам, чтобы разорвать все протоны и нейтроны и пустить их по ветру. Точно так же, если учесть, что энергия преобразуется из одной формы в другую, энергия связи ядра показывает то количество энергии, которое выделяется, когда частицы объединяются, чтобы сформировать ядро. Это аналогично энергии связи электронов, описанной выше, но из-за интенсивности сильного ядерного взаимодействия, а также из-за того, что ядро занимает намного меньшее пространство, энергии связи ядра намного больше – вместо диапазона от 1 до 100 000 эВ, которые мы наблюдали у электронов, энергия связи ядра колеблется от 1 млн до 9 млн эВ для каждой ядерной частицы. Общая энергия связи ядра Углерода, имеющего шесть протонов и шесть нейтронов, составляет 92,1 миллиона электронвольт (МэВ), в то время как шесть его электронов обладают общей энергией связи в 632 эВ – разница в энергии между гуляющей по двору курицей, которую я чуть раньше привел в пример, и мотоциклом «Харлей-Дэвидсон», мчащимся со скоростью 120 км/ч.

Более того, электронвольт – невеликая единица измерения энергии, так что в масштабах, к которым привыкли люди, даже 92 миллиона – это немного. Но атомы тоже невелики, и если добавить энергию связи ядра в атомы Углерода в чешуйке графита, она будет соответствовать энергии пассажирского поезда с шестью вагонами, который весит 680 тонн и несется вперед со скоростью в 130 км/ч! Именно поэтому ядерные превращения – независимо от того, происходят ли они на атомной электростанции или в бомбе, – настолько мощнее химических реакций, в которых взаимодействие каждого атома с его ближайшим окружением производит примерно в 10 000 000 раз меньше энергии.

Энергию связи любого ядра можно рассчитать, просто взвесив его (или, выражаясь более точно, измерив его массу). Можно было бы подумать, что такое измерение даже не понадобится, поскольку нам известно число протонов и нейтронов в каждом ядре, поэтому мы могли бы просто сложить сумму масс составляющих частиц и вычислить итоговую. Но, как показал нам Альберт Эйнштейн, масса – это просто иная форма энергии, и вся эта энергия, связывающая ядро воедино, должна откуда-то поступать. На самом деле это «откуда-то» и есть масса: E = Δmc2, где E – это энергия связи ядра, Δm – разница между суммой масс составляющих частиц и массой самого ядра, а c – скорость света.

Мы произвольно выбрали атом Углерода, чтобы определить единицу атомной массы (разумно названную «атомной единицей массы» и получившую аббревиатуру а. е. м.). Выстроив шкалу таким образом, чтобы атом Углерода обладал массой в 12 а. е. м., мы можем провести расчеты, подобные тем, что приведены в рамке 4.3, и найти энергию связи ядра Углерода. Определив сумму составляющих атома, мы увидим, что общая масса превышает 12 а. е. м. на 0,8 %. Впрочем, когда мы соединяем все составляющие, эта избыточная масса выделяется в форме энергии – мы подробнее обсудим это в главе 16. Именно поэтому сияют звезды. Обратив массу в энергию при помощи уравнения Эйнштейна, мы получим 92,1 миллиона электронвольт энергии связи для атома Углерода – сверхскоростной пассажирский экспресс в чешуйке графита.

На шкале, где масса Углерода составляет 12 а. е. м., отдельный протон имеет массу 1,00728 а. е. м., а нейтрон – массу 1,00867 а. е. м. Так, шесть протонов обладают массой

6 × 1,00728 а. е. м. = 6,04368 а. е. м. приходится на протоны,

и шесть нейтронов лишь немногим тяжелее

6 × 1,00867 а. е. м. = 6,05202 а. е. м. приходится на нейтроны.

Но нам нельзя забывать об электронах. Их масса очень мала, но она не нулевая и составляет 9,1 × 10–31 кг для каждого электрона, так что шесть электронов добавляют

6 × 0,000548 а. е. м. = 0,00329 а. е. м.,

и тем самым общая масса частиц, составляющих атом, равна 12,0989 а. е. м.

Если мы вычтем из этого числа 12,000 и произведем преобразование в единицы энергии, то получим

0,0989 а. е. м. × 1,66054 × × 10–27 кг/а. е. м. × (2,99792 × 108 м/с)2 = 1,476 × × 10–11 Дж/1,6022 × 10–13 Дж/МэВ = 92,1 Мэ В.

Энергия химической связи

Заключительная тема, требующая нашего внимания в этой главе, касается понимания процесса, благодаря которому формируются молекулы. Путем исключения можно со всей очевидностью установить, что атомы связываются в молекулы благодаря электромагнитной силе – гравитация чрезвычайно слаба, чтобы играть важную роль на атомном масштабе, а

Перейти на страницу:

Дэвид Хелфанд читать все книги автора по порядку

Дэвид Хелфанд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Хранители времени. Реконструкция истории Вселенной атом за атомом отзывы

Отзывы читателей о книге Хранители времени. Реконструкция истории Вселенной атом за атомом, автор: Дэвид Хелфанд. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*