Никола Тесла - НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ.
Для того, чтобы дать как можно больше деталей на чувствительной пластине, необходимо действовать точно также, как если бы мы должны были иметь дело с летящими пулями, которые ударяются в стену, состоящую из частей с различной плотностью, когда возникает задача добиться как можно большей разницы в траекториях пуль, которые проходят через разные части стены. Ясно, что разница будет тем больше, чем больше скорость пуль; следовательно, чтобы дать детали, требуются очень сильные излучения. Развивая эту теорию, я использовал особо толстые пленки, которые проявлял очень медленно, и таким способом были получены более четкие изображения. Впервые на важность медленного проявления указал Профессор Райт из Иеля. Конечно, если использовать предложение Профессора Генри по использованию флуоресцентного вещества в контакте с чувствительной пленкой, то процесс превращается в обычное быстрое фотографирование, и приведенные выше рассуждения не работают.
Поскольку требовалось получить как можно более мощное излучение, я продолжал уделять внимание этой задаче и добился ощутимого успеха. Прежде всего, были ограничения по вакуумной трубке, которая не позволяла прилагать такой высокий потенциал, какой бы мне хотелось; а именно, при достижении определенной высокой степени разрежения за электродом формировалась искра, что препятствовало подаче на трубку большего напряжения. Я полностью преодолел это неудобство тем, что сделал очень длинным провод, идущий к электроду, и пропустил его через узкий канал так, чтобы тепло от электрода не могло приводить к образованию искр. Еще одно ограничение налагали стримеры, которые при очень высоком потенциале пробивали в конце трубки. Это затруднение я преодолевал либо с помощью потока холодного воздуха вдоль трубки, либо путем погружения трубки в масло. Как теперь хорошо известно, масло — средство, которое исключает образование стримеров за счет того, что удаляет весь воздух. За применение масла при получении излучений ратовал ранее наш соотечественник, Профессор Троубридж. Первоначально я использовал деревянный ящик, тщательно загерметизированный воском и заполненный маслом или иной жидкостью, куда погружали трубку. В результате некоторых специальных опытов я модифицировал и усовершенствовал прибор и в последующих исследованиях использовал установку, показанную на рисунке. Лампа b, описанного прежде типа с намного более длинными, чем здесь показано, входным проводником и горлышком вставлена в большую, толстостенную стеклянную трубку l. Спереди трубка закрыта диафрагмой d из пергамента, а сзади — резиновой пробкой Р. В пробке два отверстия, при этом в нижнее вставлена стеклянная трубка t1, которая достигает почти самого конца лампы. Масло прогонялось через резиновые трубки rr от большого резервуара R, размещенного на регулируемой подставке S, до нижнего резервуара R1. Путь, который оно проходит, понятен из рисунка.
Постоянный режим работы легко поддерживался настройкой разности уровней резервуаров. Наружная стеклянная трубка t частично служила в качестве отражателя, но в то же самое время она позволяет вести наблюдение за лампой b в процессе работы. Пробка Р, в которой плотно запечатан проводник С, устроена таким образом, что ее можно вдвигать в трубку t и выдвигать из нее чтобы изменять преодолеваемую лучами толщу масла.
С помощью этой установки я получил результаты, которые ясно продемонстрировали ее преимущество. Например, на расстоянии 45 футов от конца лампы мои помощники и я могли отчетливо видеть пальцы руки через экран из вольфрамата кальция, причем лучи преодолевали около двух с половиной дюймов масла и диафрагму d. С помощью такой установки удобно делать фотографии небольших объектов с расстояния в 40 футов при экспозиции лишь в несколько минут по методу профессора Генри. Но даже без помощи флуоресцентного порошка короткие экспозиции возможны, так что, по-моему, применение упомянутого выше метода для быстрой методики несущественно. Мне охотнее верится, что при практической разработке этого принципа, если потребуется, необходимо будет воспользоваться предложением профессора Сальвиони по флуоресцентной эмульсии в сочетании с пленкой. Это должно дать лучшие результаты, чем отдельный флуоресцентный экран, и заметно упростит процесс. Могу, однако, заметить, что с момента моей последней публикации экраны заметно улучшились. Изготовители вольфрамата кальция Эдисона поставляют теперь экраны, которые дают достаточно четкие изображения. Порошок мелкий и распределен однороднее. Полагаю также, что польза будет и от более мягкой и толстой, чем прежде, бумаги. Следует только отметить, что, как оказалось, вольфрамат кальция — также прекрасный флуоресцентный реагент в лампе. Я незамедлительно проверил его свойства для подобного применения и нахожу его до сих пор непревзойденным. Посмотрим, сколь долго это продержится. Поступили сведения о том, что за границей открыты флуоресцентные вещества, превосходящие цианиды.
Еще одно улучшение в плане усиления контраста теневых изображений подсказал мне м-р Е. Р. Хьюитт. По его прикидкам отсутствие контрастности контуров теневых изображений на экране — следствие рассеяния флуоресценции от кристалла к кристаллу. Избавиться от этого он предлагает с помощью тонкой алюминиевой пластины с множеством параллельных пазов. Воспользовавшись его предложением я провел несколько опытов с проволочной тканью и, кроме того, с экранами, сделанными из смеси флуоресцентного и обычного порошков. И обнаружил, что общая яркость экрана убывает, но при сильном излучении теневые изображения оказываются контрастнее. Может быть эта идея найдет полезное применение.
С помощью описанного выше устройства я сумел намного лучше, чем прежде, обследовать тело посредством флуоресцентного экрана. Теперь позвоночный столб можно разглядывать довольно четко, даже в нижней части тела. Мне были также ясно видны контуры тазовых костей. Проводя наблюдение в области сердца, я безошибочно сумел определить его местонахождение. Фон выглядел намного ярче, и такое различие в яркости тени и окружающей картины поразило меня. Ребра я мог теперь рассматривать в ряде случаев достаточно отчетливо, также как и кости плеча. Конечно, нетрудно обследовать кости любых конечностей. Я отметил своеобразные эффекты, которые отнес на счет масла. Например, лучи проходили через пластины металла толщиной более одной восьмой дюйма, и в одном случае я смог довольно ясно увидеть кости моей руки через листы меди, железа и латуни толщиной почти в одну четверть дюйма. Через стекло лучи, казалось, проходят настолько свободно, что если смотреть через экран в направлении под прямыми углами к оси трубки, то видно самое интенсивное действие, хотя лучи должны были пройти через большую толщу стекла и масла. Стеклянная пластина толщиной почти полдюйма, которую поместили перед экраном, едва флуоресцировала. Когда экран помещался перед трубкой на расстоянии около трех футов, то голова помощника, втиснутая между экраном и трубкой, отбрасывала лишь слабую тень. Временами казалось, что кости и плоть как бы в равной степени прозрачны для излучений, проходящих через масло. Когда экран находился очень близко к лампе, он освещался через тело помощника столь сильно, что когда перед ним двигали рукой, я мог ясно различать движение руки через тело. В одном случае были различимы даже кости руки.
После того, как в некоторых опытах я заметил необычную прозрачность костей, то поначалу предположил, что лучи могут быть колебаниями высокой частоты, и что часть их неким образом поглощалась маслом. Однако, такой взгляд пришлось отбросить, когда я обнаружил, что на определенной дистанции от лампы получается контрастная тень костей. Последнее обстоятельство привело меня к успешному использованию экрана при получении отпечатков на пластине. А именно, в таком случае удобно сначала посредством экрана определить надлежащее расстояние, на котором следует разместить объект перед тем, как делать отпечаток. Часто оказывается, что изображение намного четче на большом расстоянии. Во избежание ошибок при работе с экраном я окружил ящик толстыми металлическими пластинами так, чтобы воспрепятствовать получаемой вследствие излучений флуоресценции, которая достигает экрана с боков. По-моему, такая мера совершенно необходима, если стремиться добиться точных результатов.
В процессе все еще продолжаемого мною изучения поведения масел и прочих жидких изоляторов мне пришло в голову исследовать важный эффект, открытый профессором Дж. Дж. Томсоном. Некоторое время назад он заявил, что все тела, через которые проходят рентгеновские излучения, становятся проводниками электричества. Для исследования данного явления я прибегнул к резонанс чувствительному испытанию, по методике, указанной мною в более ранних работах по высокочастотным токам. Вторичную катушку, которая желательно не имеет слишком тесной индуктивной связи с первичной катушкой, соединяют с ней и с землей, а колебание в первичной катушке настраивают так, чтобы был истинный резонанс. Поскольку вторичная катушка имела значительное число витков, то очень небольшие тела, прикрепляемые к свободной клемме, существенно изменяли потенциал на ней. В деревянную заполненную маслом камеру я помещал трубку, соединял ее с клеммой и настраивал колебание в первичной обмотке так, чтобы наступил резонанс, но чтобы лампа не излучала рентгеновские лучи в сколько-нибудь ощутимой степени. Затем я изменял режим так, чтобы лампа испускала лучи очень активно. Теперь, согласно предположению профессора Дж. Дж. Томсона, масло должно было стать проводящим, и должно было наступить очень заметное изменение в колебании. Оказалось, что это не так, поэтому в открытом Дж. Дж. Томсоном явлении необходимо усматривать лишь еще одно доказательство того, что здесь мы имеем дело с потоками материи, которые, проходя через тела, уносят электрические заряды. Но тела не становятся проводниками в общем значении этого термина. Метод, которого я придерживался, настолько чувствительный, что ошибка почти невозможна.