Уголев Михайлович - Теория адекватного питания и трофология
Итак, организм-ассимилятор индуцирует расщепление структур пищевого объекта ферментами последнего, активируя их и создавая оптимальные условия среды, в том числе pH. В соответствии с классическими представлениями о механизмах переваривания пищевого объекта, ферменты пищеварительных соков осуществляют свой эффект только поверхностно. Скорость диффузии гидролаз внутрь пищевого объекта даже при низком диффузионном сопротивлении мембраны лимитирована их сравнительно большой молекулярной массой, тогда как скорость диффузии протона примерно на 3-4 порядка больше. При выходе гидролаз из лизосом под влиянием сдвига pH возникает множество центров гидролиза в каждой клетке (рис. 1.4), что создает практически тотальное расщепление ткани. Следует добавить, что в кислых секретах организма-ассимилятора содержатся главным образом протеазы, тогда как ферментный спектр лизосом практически универсален. Однако в ассимилируемых объектах имеются также структуры (например, белки соединительной ткани, жировые депо, в тканях растений - полисахаридные депо), лишенные лизосом и не подвергающиеся индуцированному аутолизу. Следовательно, можно предположить, что ферменты пищеварительных соков (гидролазы, расщепляющие белки, жиры и углеводы) особенно важны для утилизации указанных структур с высокой скоростью.
По-видимому, индуцированный аутолиз существует не только у плотоядных, но и у растительноядных животных. Например, при использовании травоядными свежих кормов расщепление пищи отчасти обусловлено ферментами, находящимися в клетках растений. Некоторое значение в гидролизе пищевых веществ в желудочно-кишечном тракте новорожденных детей могут иметь гидролитические ферменты материнского молока. Наконец, «созревание» мяса, по-видимому, есть не что иное, как частичный аутолиз, который можно рассматривать как некоторый элемент пищеварительного процесса.
Примеры индуцированного аутолиза обнаружены также среди низших животных, в частности у простейших и плоских червей. После захвата пищевого объекта происходит образование новых вакуолей, или везикул, обладающих кислой реакцией. Хотя кислая фаза переваривания в этих случаях была интерпретирована как выполняющая лишь денатурацию структур пищевого материала, представленные данные свидетельствуют о возможности значительного расщепления пищи в результате индуцированного аутолиза. В соответствии с этой гипотезой кислая среда пищеварительных везикул приводит к активации лизосомальных ферментов двумя путями: 1) увеличивая проницаемость мембран лизосом; 2) создавая адекватные условия для действия лизосомальных ферментов, которые активны в слабокислой среде. Следовательно, возможен не только протеолиз, но и расщепление множества других пищевых веществ.
Можно думать, что представления об индуцированном аутолизе позволяют глубже понять механизмы естественного переваривания пищи, ее легкое усвоение без термической обработки и, наконец, то обстоятельство, что индуцированный аутолиз - это важное и древнее приспособление последовательных партнеров в трофической цепи. 1.3.7. Транспорт
Основные концепции транспорта пищевых веществ через клеточные мембраны, клеточные слои и межклеточные пути охарактеризованы в ряде фундаментальных обзоров (Никольский, 1977; Елецкий, Цибулевский, 1979; Levin, 1979; Crane et al., 1980; Hoshi, Himukai, 1982; Pharmacology..., 1984; Уголев, 1985, 1987a; Мембранный гидролиз..., 1986; Semenza, Corcelli, 1986; Alpers, 1987; Hopfer, 1987; Shiau, 1987; Molecular basis..., 1988; Evans, Graham, 1989, и др.).
Долгое время доминировало представление об исключительном разнообразии механизмов транспорта у различных организмов. Тем более удивительно, что, как оказалось, у организмов, стоящих на разных уровнях эволюционной лестницы, механизмы трансмембранного и трансцеллюлярного транспорта пищевых веществ идентичны или сходны. Это сходство выражается прежде всего в общих принципах построения и функционирования транспортных систем клеточной мембраны. Среди них общий источник энергии для активного транспорта - АТФ; наличие высокоспецифических связывающих и транспортирующих белков; сопряженность избирательного трансмембранного переноса глюкозы и аминокислот с переносом ионов натрия или протонов; идентичность механизмов действия некоторых активаторов и ингибиторов на транспортные системы далеких друг от друга видов организмов, и т.д. Важно, что у всех групп многоклеточных организмов, и даже у Protozoa и, наконец, в ряде случаев у прокариотов, обнаружена идентичность систем переноса пищевых веществ через мембраны клеток или через клеточные слои (рис. 1.5).
Согласно современным представлениям, существует два типа транспорта - макромолекулярный и микромолекулярный. Под первым подразумевается перенос крупных молекул и надмолекулярных комплексов. Этот тип транспорта в большинстве случаев осуществляется с помощью эндоцитоза и обеспечивает, например, проникновение небольших, но значимых для организма количеств белка через кишечный барьер млекопитающих. Однако основным типом транспорта пищевых веществ у всех организмов, по-видимому, является микромолекулярный, в результате которого через клеточную мембрану переносятся преимущественно мономеры (различные ионы, глюкоза, аминокислоты, жирные кислоты и другие молекулы), а также олигомеры с небольшой молекулярной массой. Например, у высших организмов углеводы транспортируются через плазматическую мембрану кишечных клеток в основном в виде моносахаридов (глюкозы, галактозы, фруктозы и т.д.), белки - в виде аминокислот, жиры - в виде жирных кислот и глицерина.
Через мембрану клеток вещества проникают за счет пассивного транспорта, облегченной диффузии и активного транспорта. Пассивный транспорт объединяет в себе процессы диффузии и осмоса. Облегченная диффузия осуществляется особыми переносчиками, или транспортерами, - специфическими белковыми молекулами, которые облегчают проникновение субстратов через липопротеиновую мембрану клетки без затраты энергии. Активный транспорт - это процесс проникновения веществ через плазматическую мембрану клетки против электрохимического градиента. В этом процессе, требующем затраты энергии, участвуют специальные транспортные системы, которые функционируют по типу мобильных переносчиков, конформационных переносчиков или, что встречается наиболее часто, каналов (обзор: Hopfer , 1987, и др.).
Имеются серьезные основания полагать, что существует особый транспортный механизм, названный нами «подвижная адсорбция», который был рассмотрен в нескольких наших работах, начиная с 1967 г. (Уголев, 1967). Такая адсорбция осуществляется благодаря движению молекул по активным поверхностям и центрам по градиенту концентраций, который может создаваться различными путями: за счет транспортных систем, локализованных в определенных точках и активно переносящих вещество из одного компартмента в другой, или с помощью ферментных систем, трансформирующих это вещество. Мы полагаем, что такой механизм можно было бы назвать транссорбцией.
Все перечисленные механизмы справедливы для организмов, стоящих на разных уровнях развития: от примитивных прокариотов до высших эукариотов.
1.4. Универсальность строительных и функциональных блоков на различных уровнях организации биологических систем как условие динамического и трофического единства биосферы
Длительное существование биосферы как динамической системы невозможно без циркуляции веществ и энергии, включающей в себя в качестве обязательного компонента трофические цепи. Существование последних и перенос материалов, синтезированных первичными продуцентами, возможны лишь благодаря общности основных ассимиляторных механизмов. Их сущность стала понятна сравнительно недавно в результате достижений новой биологии, хотя важность и грандиозность процессов циркуляции веществ в биосфере были очевидны уже давно. Как бы ни были сложны и разнообразны трофические цепи, переход от одного звена к другому сводится к разборке, т.е. деполимеризации, материалов предшествующего звена на некоторые простые элементы, а затем к их реконструкции (ресинтезу) в структуры собственного организма.
Однако сейчас становится все более ясным, что перенос биомассы вдоль трофических цепей возможен не только благодаря идентичности во всей биосфере строительных блоков (моносахаридов, аминокислот и т.д.), но и благодаря единству биосферы на уровне универсальных функциональных блоков. Важность этих двух принципов настолько велика для понимания феномена жизни в целой и ее составляющих, что необходимо сказать о них несколько слов.
Поразительное разнообразие живых систем сочетается с единством всех известных до настоящего времени организмов на уровне строительных блоков, из которых они сложены. В биологии прошлого века такое единство рассматривалось на уровне клеточных структур организмов. Однако существует большое сходство живых систем и на уровне субклеточных органелл. Успехи современных химии и молекулярной биологии позволили утверждать, что единство таких систем проявляется также на молекулярном уровне - на уровне строительных и на уровне функциональных блоков. Под строительными блоками, как отмечено выше, подразумеваются такие простые органические молекулы, как аминокислоты, моносахариды и т.д., из которых состоят макромолекулы. Под функциональными блоками имеются в виду макромолекулы и макромолекулярные комплексы, выполняющие элементарные физиологические функции.