Kniga-Online.club
» » » » Ричард Фейнман - 2. Пространство. Время. Движение

Ричард Фейнман - 2. Пространство. Время. Движение

Читать бесплатно Ричард Фейнман - 2. Пространство. Время. Движение. Жанр: Прочее издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Давайте избавимся от с, оно нам не нужно, если мы хотим иметь удобное пространство, в котором х и t можно перестав­лять. Представьте, к какой путанице приведет измерение ширины по углу, под которым виден предмет, а толщины — по сокращению мышц при фиксировании глаза на предмет и выражение толщины в метрах, а ширины в радианах. При преобразованиях уравнений типа (17.2) тогда получится страшная неразбериха и ни за что не удастся разглядеть всю простоту и ясность предмета по той технической причине, что одно и то же будет измеряться двумя различными едини­цами. С помощью уравнений (17.1) и (17.3) природа говорит нам, что время равнозначно пространству; время становится пространством; их надо измерять в одинаковых единицах. Какое расстояние измеряет секунда? Из уравнения (17.3) это легко понять: секунда — это 3·108 м, расстояние, которое свет проходит за 1 сек. Иначе говоря, если бы расстояния и время мы измеряли в одинаковых единицах (секундах), то единицей длины было бы 3·108 м и уравнения упростились бы. А другой способ уравнять единицы — это измерять время в метрах. Чему равен метр времени? Метр времени — это время, за какое свет проходит расстояние в 1 .м, т. е. (l/3) ·10-8 сек, или 3,3 миллиардных доли секунды! Иными словами, нам нужно записать все уравнения в системе единиц, где с=1. Когда время и пространство станут измеряться в одинаковых единицах, уравнения, естественно, упростятся;

Может быть, вы сомневаетесь в законности этого или вас «пу­гает», что, положив с=1, вы не сможете вернуться к правиль­ным уравнениям? Напротив, без с их гораздо легче запомнить, а с легко поставить на нужные места, если присмотреться к размерностям. Скажем, в Ц(1—u2) мы видим, что из неимено­ванного числа 1 приходится вычитать именованное (квадрат скорости u2); естественно, этот квадрат нужно разделить на с2, чтобы сделать вычитаемое безразмерным. Таким путем можно расставить с, где полагается.

Очень интересно различие между пространством-временем и обыкновенным пространством, различие между интервалом и расстоянием. Посмотрите на формулу (17.5). Если два события произошли в какой-то системе координат в одно и то же время, по в разных точках пространства, то, поместив начало коорди­нат в точку, изображающую одно из событий, мы получим, что t=0, а, например, х№0. Значит, квадрат интервала получится отрицательным, а сам интервал — мнимым (корень квадратный из отрицательного числа). Интервалы в этой теории бывают и действительные, и мнимые, потому что их квадраты могут быть и положительными, и отрицательными (в отличие от расстояния, квадрат которого бывает только положительным). Когда интервал мнимый, говорят, что интервал между двумя событиями (точками) пространственно-подобный (а не мнимый), потому что такой интервал получался бы всегда, если бы весь мир застыл на одном времени. С другой стороны, если два предмета в данной системе координат попадают в одно и то же место в разные моменты времени, тогда t0, a x=y=z=0 и квадрат интервала положителен; это называется времени-подобным интервалом. Далее, если провести на диаграмме пространства-времени две прямые под углом 45° (в четырех измерениях они обратятся в «конус», называемый световым), то точки на этих прямых будут отделены от начала координат нулевым интервалом. Куда бы из начала координат ни рас­пространялся свет, все равно x2+y2+z2=c2t2, т. е. интервал между событием прихода света в любую точку и началом всегда равен нулю [как легко видеть из (17.5)]. Кстати, мы сейчас доказали, что скорость света в любых системах координат одинакова: ведь если интервал в обеих системах одинаков, то, будучи равен нулю в одной из них, он равен нулю и в дру­гой, и квадрат скорости света — отношение x'2+y'2+z'2к t'2 опять равен с2.

Сказать, что скорость распространения света — инвариант,— это все равно, что сказать, что интервал равен нулю.

§ 3. Прошедшее, настоящее, будущее

Пространственно-временную область, окружающую данную точку пространства-времени, можно разделить на три об­ласти, как показано на фиг. 17.3.

Фиг. 17.3. Область простран­ства-времени, окружающая начало координат.

В одной из них интервалы пространственно-подобны, в остальных двух — времени-подобны. Эти три области, на которые распадается окружающее точку пространство-время, в физическом отношении связаны с самой точкой очень интересно.

Из области 2 физический объект или сигнал, двигаясь со скоростью, меньшей скорости света, может прийти в точ­ку О. Поэтому события в этой области могут воздействовать на событие в точке (9, могут влиять на него из прошло­го (t<0). Действительно, предмет в точке Р на оси отрица­тельных t оказывается точно в «прошлом» по отношению к точке О; Р — это та же пространственно-временная точ­ка О, но в более ранний момент времени. Что в ней когда-то случилось, теперь сказывается на точке О. (К сожалению, именно такова наша жизнь.) Другой предмет из Q попадет в О, двигаясь с определенной скоростью, меньшей, чем с; значит, если бы этот предмет двигался в космическом кораб­ле, он мог бы тоже оказаться прошлым той же точки О пространства-времени. Это означает, что в какой-то другой системе координат ось времени могла бы пройти через О и Q. Таким образом, все точки области 2 оказываются по отношению к О в «прошлом»; все, что в этой области происходит, может сказаться на О. Поэтому область 2 можно назвать воздей­ствующим прошлым; это геометрическое место всех событий, которые хоть каким-то образом могут повлиять на событие в точке О.

А зато область 3 — это та область, на которую в свою очередь могут повлиять события в О; в тела, расположенные внутри области 3, можно «попасть пулей», скорость которой меньше скорости света. Это тот мир, чье будущее в наших руках (если мы сами находимся в точке О); область 3 можно назвать воздействуемым будущим. Остальное пространство-время (область 1) интересно тем, что на события в нем из точки О влиять нельзя и, обратно, ничто, происходящее в этой области, никак не может повлиять на положение в точке О, потому что ничто не может обогнать свет. Конечно, если что-то про­изойдет в точке R, это может сказаться позднее; если, напри­мер, Солнце «сию минуту» взорвется, то мы узнаем об этом лишь через 8 минут, и раньше этого времени взрыв никак отразиться на нас не может.

То, что происходит «сейчас», «сию минуту» — это на самом деле нечто таинственное; оно не поддается определению, не под­дается и воздействию, однако несколько позже оно может воздей­ствовать на нас (или мы на него, если какое-то время тому назад мы позаботились об этом). Когда мы смотрим на звезду Альфа Центавра, мы видим ее такой, какой она была 4 года тому назад; нам может захотеться узнать, на что она похожа «сейчас». «Сей­час» — это значит в этот же момент в нашей системе координат. Альфу Центавра мы можем видеть только при помощи световых лучей, явившихся к нам из нашего прошлого, прошлого че­тырехлетней давности, но что на ней происходит «сейчас», мы не знаем. Происходящее на ней «сейчас» сможет воздей­ствовать на нас только через четыре года. «Альфа Центавра сейчас» — это идея, или понятие, существующее в нашем мозге; никакого физического определения для такого понятия в этот момент нет, потому что надо подождать, прежде чем «сейчас» удастся увидеть; для Альфы Центавра даже правильное по­нятие «сейчас» не поддается определению сию минуту. Ведь «сейчас» зависит от системы координат. Если бы, к примеру, Альфа Центавра двигалась, то наблюдатель на ней не согла­сился бы с нашим пониманием его «сейчас», потому что его оси координат были бы повернуты на какой-то угол, а его «сейчас» было бы совсем другим временем. Мы уже говорили, что од­новременность не определяется однозначно.

Встречаются порой предсказатели судьбы, гадалки, люди, утверждающие, что они могут узнавать будущее; немало чудес­ных историй рассказывается и о людях, которые внезапно видят перед собой свое воздействуемое будущее. От этого воз­никает множество парадоксов: ведь если мы знаем, что что-то случится, то наверняка сможем избежать этого, если захотим. На самом же деле ни один провидец будущего не способен узнать даже настоящее! Нам никто не скажет, что сию минуту происходит достаточно далеко от нас, потому что это нена­блюдаемо.

Перейти на страницу:

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


2. Пространство. Время. Движение отзывы

Отзывы читателей о книге 2. Пространство. Время. Движение, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*