Журнал «Юный техник» - Юный техник, 2010 № 02
Предполагается, что экипаж нового корабля может быть до шести человек. Его планируемая масса — 12,5 т, масса многоразового возвращаемого аппарата — 8 т, что позволит доставлять его с места посадки на космодром с помощью вертолета на внешней подвеске.
Еще одна интересная особенность — новая система посадки.
Сегодня космические аппараты садятся двумя способами. Первый из них — классический, парашютный — использовали и используют и российские конструкторы, и американские, и китайские…
Второй способ — посадка самолетного типа; так приземлялись американские шаттлы и отечественный «Буран».
«Изюминкой» нового космического корабля РКК «Энергия» станет реактивная посадка возвращаемого аппарата с использованием 12 твердотопливных двигателей.
Причем у обоих способов есть общее свойство — основное гашение скорости происходит за счет торможения в атмосфере самим аппаратом. И шаттлы, и «Союзы» гасят основную скорость, тормозясь в атмосфере и сильно при этом нагреваясь. Спасают аппараты от перегрева лишь особые защитные экраны и покрытия. Затем при парашютном способе на высоте 5 — 10 км при скорости спускаемого аппарата меньше скорости звука в ход идут купольные системы, еще сильнее замедляющие падение. И при самой посадке срабатывают ракетные системы приземления. При самолетной посадке произвести приземление помогают крылья, работающие, как на обычном самолете.
А вот в фантастических фильмах можно видеть, как космолеты в самый последний момент притормаживают опять-таки двигателями и могут садиться практически без пробега, вертикально. Нечто подобное собираются предложить и наши конструкторы.
В. ВЛАДИМИРОВ
РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…
Жизнь в открытом космосе
В одной фантастической повести описано, как литературный герой передвигается по поверхности Луны в телогрейке, закутавшись в шарф и имея при себе баллон с кислородом. Интересно, проводил ли кто-нибудь на самом деле опыт по выживанию живых существ в космическом вакууме без скафандра?
Андрей Алексеев, г. Сочи
На орбиту — без скафандра?…В свое время эти кадры обошли весь мир. В барокамере сидит испытатель в скафандре; а рядом с ним на столе — стакан с водой. Давление в камере начинают снижать, и вскоре вода в стакане закипает.
Примерно так же в безвоздушном пространстве закипела бы и кровь в теле человека, утверждают специалисты. Жизнь ему спасает скафандр…
Но всякая медаль, как известно, имеет и обратную сторону. Надев скафандр, который тут же раздувается из-за разницы давлений внутри и снаружи, космонавт до 80 % энергии, расходуемой на работу в открытом космосе, тратит на борьбу собственно со скафандром. Каждый шаг, движение рук даются с огромным трудом…
Более того, чрезмерный объем скафандра, если помните, едва не привел к трагедии во время первого выхода в космос Алексея Леонова. После того, как он вышел через шлюз, скафандр его раздуло так, что вернуться обратно ему удалось лишь с огромным трудом. Алексей Архипович был вынужден сбросить давление внутри скафандра до критического и буквально втиснул себя обратно в корабль, подтягиваясь на руках.
Все это хорошо известно голландскому исследователю Ван Страатену. И, тем не менее, он осмеливается утверждать, что опасность пребывания человека в безвоздушном пространстве сильно преувеличена.
В качестве доказательства он приводит эксперимент, поставленный на себе. Ван Страатен лично находился в барокамере без скафандра и довел разрежение до величины, составлявшей 1 % от нормального атмосферного давления. И, тем не менее, остался жив-здоров.
«Все дело в том, что разрежение создавали постепенно, в течение нескольких часов, чтобы не возникло кессонной болезни», — подчеркнул экспериментатор. При этом он также дышал специальной смесью увлажненного кислорода и углекислого газа. Подобная смесь, кстати, спасла и Леонова. Если бон дышал обычным воздухом, то при сбросе давления ему наверняка пришлось бы плохо.
Идет эксперимент в барокамере.
Снаружи барокамера похожа на большую бочку.
«Природа сконструировала нас очень мудро, — рассуждает Ван Страатен. — Скафандр в какой-то мере можно приравнять к внешнему скелету, которым обладали некоторые первобытные существа. Между тем, куда совершеннее оказались существа с внутренним скелетом»…
Человек все-таки — не стакан воды. Кожа, сосудистые стенки, мускулатура, оболочки клеток способны противостоять вакууму.
Конечно, кислород для дыхания в космосе человеку необходим. Однако в меньших количествах, чем на Земле. Потому что на нашей планете человек большую часть энергии использует для преодоления земного притяжения. В космосе же или на поверхности астероидов, где гравитация по сравнению с земной ничтожна, энергии потребуется во много раз меньше. Следовательно, будет существенно меньше и потребность в кислороде — запаса дыхательной смеси, который аквалангист расходует за час, в космосе может хватить на несколько дней…
Конечно, к существованию в космосе придется привыкать. Но возможности нашего организма если не беспредельны, то очень велики. Вспомните хотя бы об йогах, которые по несколько суток проводят в небольших, герметично закрытых пространствах. При этом они резко замедляют обменные процессы организма, вследствие чего уменьшается и потребность в кислороде.
Ван Страатен также полагает, что не стоит бояться низких космических температур. В отсутствие атмосферы, без ветра организм теряет тепло лишь путем излучения. И расчеты показывают, что за час правильно одетый человек потеряет в космосе столько калорий тепла, что их вернет ему кусочек сахара. Во время опыта в барокамере Ван Страатен, одетый, как на лыжную прогулку, избежал обморожений при температуре -40 °C. А ныне доказано, что кратковременное воздействие на человека даже криогенных температур несет ему лишь здоровье.
Гораздо большую опасность, по мнению голландца, представляет космическая жара. Солнечные лучи несут колоссальную энергию, и в космосе придется принимать серьезные меры против солнечных ожогов. Понадобится одежда из светоотражающей ткани.
Приключения «водяных медведей»Многие специалисты поначалу отнеслись к расчетам, экспериментам и выводам голландца с большим скепсисом. Однако недавно выяснилось — живые многоклеточные существа и в самом деле способны выжить в открытом космосе без скафандра или иных защитных приспособлений!
Группа ученых из Университета Кристианстад (Швеция) под руководством профессора Ингемара Йонссона провела эксперимент, отправив на орбиту два вида тихоходок (Tardigradae) — крошечных членистоногих размером от 0,1 до 1,5 мм. Различные виды тихоходок обнаруживают и на шестикилометровой высоте в Гималаях, и на четырехкилометровой глубине в океанских впадинах, в Антарктиде и даже вблизи термальных источников, где вода нагрета чуть ли не до кипения.
Впервые эти неприхотливые существа, обитающие почти повсеместно в воде или в очень влажных средах, были описаны немецким пастором Йоханом Гецем, который назвал их «водяными медведями». «Водяными», вероятно, за то, что он живут в воде, а «медведями» за способность впадать в спячку.
И в самом деле, экстремальные условия «водяные медведи» переносят, теряя воду за счет высушивания (ее содержание в организме уменьшается до 1 процента от нормы). При этом они покрываются защитной пленкой и в такой капсуле терпеливо ждут наступления лучших времен. Когда окружающая среда становится более благоприятной, тихоходки вскоре возвращаются к «нормальному» существованию.
Эти свои качества они и продемонстрировали на борту российского беспилотного аппарата «Фотон-МЗ». В космос было отправлено 120 тихоходок двух видов — Richtersius coronuer и vlilnesium tardigradum, — которые были разделены на 4 группы. Одна из групп 10 суток провела в условиях вакуума, еще две группы подверглись облучению ультрафиолетом, последняя группа, кроме прочего, была подвергнута еще и влиянию космического излучения.
При этом выяснилось, что большинство тихоходок не только остались живы в столь экстремальных условиях, но и по возвращении на Землю дали нормальное потомство.
Свидетельствуют ученыеИ вот теперь ученые гадают, какие механизмы помогли тихоходкам выжить в условиях открытого космоса. Ведь воздействие жесткого ультрафиолета вызывает разрывы и мутации ДНК. Как полагает биолог Джеймс Клегг из Калифорнийского университета (США), вполне возможно, что тихоходки способны восстанавливать поврежденную структуру ДНК. А если так, стоило бы поучиться у них такой способности.