Журнал «Юный техник» - Юный техник, 2006 № 11
Выводы, как говорится, делайте сами!
Публикацию подготовил А. ПЕТРОВ
ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Умные материалы
Помните знаменитый пример о роте солдат, которые маршировали в ногу по мосту, и тот обрушился в результате резонанса? «Такое было бы невозможно, — утверждают специалисты нового научного направления, — если бы в свое время конструкторы и строители того моста воспользовались последними достижениями адаптроники»…
В наши дни достаточно много материалов с изменяющимися по команде свойствами. Вспомним хотя бы сплавы с памятью или очки-«хамелеоны», имеющие фотохромные стекла. Однако профессор Холген Хальзерка, преподающий в техническом университете Дармштадта и одновременно возглавляющий Институт эксплуатационной прочности и надежности систем им. Фраунгофера, полагает, что перечень умных материалов для нового поколения конструкций, машин и механизмов далеко не исчерпан. Он прогнозирует появление уже в ближайшем будущем новых сплавов и композитов, которые смогут активно реагировать на изменения внешних условий, меняя соответствующим образом свои собственные характеристики.
В этом как раз и заключается основной принцип адаптроники — отрасли науки, изучающей возможности приспособления к изменениям окружающей среды того или иного механизма, машины или конструкции.
Для наглядности вернемся к мосту, упомянутому в начале. Когда такое сооружение строится по обычной технологии, то в его конструкцию приходится закладывать солидные запасы прочности. Ведь мост должен устоять при сильнейшем урагане, возможных сотрясениях почвы и при самой различной нагрузке. На испытаниях на новый мост, на всю его длину, посылают колонну тяжелых, полностью загруженных грузовиков. Такое вряд ли потом когда случится за всю историю эксплуатации моста, но проверять конструкцию на прочность при экстремальных перегрузках все-таки приходится. Излишек прочности, закладываемый в конструкцию, приводит к необходимости возведения лишних опор, утяжеления самой конструкции, излишней стоимости сооружения. И все же не избавляет от возможных случайностей. Вспомним ту же роту: строители моста упустили из виду возможность создания переменных нагрузок определенной частоты, вот мост и рухнул.
Иное дело, если бы такой мост построили по правилам адаптроники. Тогда бы в его конструкцию, кроме обычных пассивных элементов, были бы заложены и активные элементы. Их датчики восприняли бы топот солдатских сапог как сигнал к действию. И соответствующие элементы конструкции подверглись бы ритмичному усилению. И никаких неприятностей не возникло бы…
Таким образом, адаптроника открывает новые возможности для построения облегченных, но в то же время безопасных конструкций. Как подобная активная система уже создается и действует на практике, мы можем рассмотреть еще на одном примере. Ныне все автомобили конструируются с учетом норм пассивной и активной безопасности. Пассивная безопасность предусматривает, чтобы у автомобиля была прочная рама, но сминаемые капот и багажник, которые при столкновении принимали бы на себя и гасили энергию удара.
Кроме того, при аварии во многих автомобилях срабатывают соответствующие датчики, включающие систему экстренного торможения, надувающие подушки безопасности и т. д.
Однако конструкторы знают, что все эти меры в основном достаточны лишь при фронтальном ударе. Но если автомобиль получит удар в бок, дверь легко сминается, а то и просто слетает с петель и, оказываясь внутри салона, наносит травмы пассажирам. Сейчас проходит испытания новая система безопасности. При опасности бокового удара снизу в междверное пространство мгновенно выдвигаются прочные штыри, удерживающие дверь на месте и повышающие ее жесткость. А тотчас после удара эти штыри вновь убираются, позволяя беспрепятственно открыть двери автомобиля для экстренной эвакуации.
Такая система должна иметь, как минимум, три элемента: сенсоры, подающие сигнал опасности, микропроцессор или некий мозг, анализирующий принятый сигнал и отдающий приказ на срабатывание защиты, и непосредственно «мышцы» — исполнительные элементы самой защиты.
Для всего этого, конечно, необходимы материалы и устройства, способные выполнять роль органов чувств, мышления, исполнительных мышц. Они не могли быть созданы в позапрошлом или даже в начале прошлого столетия. А потому первые прообразы адаптронных систем стали появляться лишь в середине 80-х годов XX века. Именно в это время появились первые научные работы, показывающие, каким образом можно целенаправленно модернизировать конструкционные материалы.
Сейчас к наиболее распространенным материалам, способным активно противостоять натиску окружающей среды, относятся пьезокристаллы. «Пьезо» в переводе с английского языка означает «давление». И в самом деле, если надавить на пьезокристалл, то есть приложить к нему механическое усилие, и он электризуется, образуя на противоположных гранях отрицательные и положительные заряды. Само это явление, именуемое прямым пьезоэффектом, было исследовано еще знаменитым французским ученым, лауреатом Нобелевской премии Пьером Кюри в 1880 году. И его свойствами пользовались, например, в пьезоголовках проигрывателей грампластинок.
В наши дни инженеры широко используют и так называемый обратный пьезоэлектрический эффект. Если воздействовать на пьезокристалл электрическим полем, можно вызывать его механическую деформацию, отметить высочайшую скорость реакции подобных материалов. Например, есть пьезокристаллы, которые способны всего за 0,00006 секунды развить усилие в 3000 ньютонов. Величина перемещения при этом измеряется тысячными долями миллиметра, но ведь можно собирать комплекты из нескольких пьезоблоков.
Подобные устройства уже нашли себе применение в практике. Так, в Германии начат серийный выпуск форсунок для дизельных двигателей, которые меняют режим своей работы в зависимости от конкретной необходимости несколько десятков тысяч раз в секунду. Главный элемент такой форсунки — именно пьезоблок, регулирующий момент впрыска топлива в цилиндр, его объем и рабочее давление.
Инженеры фирм «Бош» и «Сименс» создали для такого блока специальную пьезокерамику с примесью окислов циркония и свинца, что позволяет материалу выдерживать огромные механические и тепловые нагрузки в течение 20 лет.
Аналогичные материалы, меняющие свои механические свойства под воздействием электромагнитных полей, тепла или света, могут быть использованы и в адаптронике. Сейчас материаловеды специально занимаются этой проблемой, создавая все новые сорта пьезокерамики и пьезополимеров, электро- и магнитореологические жидкости, меняющие свою вязкость под воздействием электромагнитных полей, и сплавы с эффектом памяти.
К сожалению, пока подобные системы все еще очень дороги. Поэтому в первую очередь активные системы используются в особо ответственных конструкциях — например, в космических и авиационных отраслях машиностроения. Так, активные материалы, созданные специалистами Всероссийского института авиационных материалов, были опробованы в конструкции экспериментального истребителя с крылом обратной стреловидности С-37 «Беркут».
Говорят, аналогичные системы могут оказаться весьма эффективны для укрощения вибраций и резкого уменьшения шума в различных двигателях и машинах. Как показывают исследования наших дней, даже небольшие адаптивные элементы позволяют добиться значительного эффекта, например, при резонансном раскачивании системы.
В. ЧЕТВЕРГОВ, инженер
Кстати…СУПЕР ДЛЯ ГИПЕР
Интересную целевую программу создания новых материалов (в том числе и интеллектуальных) представили недавно три известных научных организации: Всероссийский научно-исследовательский институт авиационных материалов (ВИАМ), Институт общей и неорганической химии имени Н.С. Курнакова РАН и Российский химико-технологический университет имени Д.И. Менделеева. В результате научно-технического сотрудничества ведущих наших материаловедов уже в ближайшие годы отечественная промышленность получит керамические композиционные материалы нового поколения, выдерживающие температуру до 2000 °C. Именно такие материалы нужны, например, для современных газотурбинных двигателей, которые поставят на гиперзвуковые самолеты.
При этом, по словам генерального директора ВИАМ, члена-корреспондента РАН Евгения Каблова, наши исследователи не ставят себе задачу догнать зарубежных конкурентов, а предлагают принципиально новые решения в создании материалов, превосходящих по своему уровню зарубежные аналоги.