Журнал «Юный техник» - Юный техник, 2009 № 05
Чтобы понять, как работает насос Серафима Буюкли, достаточно обратить внимание на то, что под действием электрического поля находящаяся в конденсаторе жидкость притягивается к одной из стенок и соскальзывает с нее, словно сани со снежной горы.
Для выполнения расчета сил, действующих на жидкость в насосе, мы используем принцип наименьшего действия — принцип Мопертюи.
Пьер Луи Мопертюи (1698–1759).
В сильно упрощенном виде он формулируется так: «Всякая система стремится перейти в состояние, при котором ее потенциальная энергия минимальна» (именно поэтому книга падает на пол, а не на потолок).
На рисунке конденсатор с двумя расходящимися пластинами. Мысленно наполним его диэлектрической жидкостью, например, трансформаторным маслом, и подадим напряжение. Под его действием молекулы масла поляризуются и накопят некоторую энергию. (Отметим, что основная часть энергии конденсатора запасается в диэлектрике.)
В конденсаторном насосе С. Буюкли жидкость перетекает от высокой напряженности поля к низкой.
При разрядке конденсатора она израсходуется на создание тока в его внешней цепи. В нашем конденсаторе напряженность поля выше всего в самой узкой части. Там наиболее высока и плотность энергии в единице объема диэлектрика. В широкой части и напряженность поля, и плотность энергии минимальны. Поэтому жидкий диэлектрик потечет от узкой части конденсатора к широкой. Здесь плотность энергии в единице его объема уменьшится примерно в 60 раз. Избыток энергии будет израсходован на движение жидкости.
При разности потенциалов 10 кВ для трансформаторного масла получаем скорость течения 0,02 м/с. Это уже технически значимый результат! Такой насос пригодится везде, где требуется подавать небольшие количества жидкости, например в лабораторных приборах, причем насос Серафима будет работать даже в космосе, в условиях невесомости.
Может такой насос перекачивать и газы. Воздух, например, он может перекачивать со скоростью 0,35 м/с. Получается неплохой вентилятор для охлаждения компьютера!
Экспертный совет единогласно присуждает Серафиму Авторское свидетельство ПБ.
ДОМ ДЛЯ ТУРИСТОВ
…из надувных блоков-кирпичей, скрепленных друг с другом липучками, предложил 11-летний Александр Огородов Из Томской области. Да, теоретически скрепить «кирпичи» друг с другом «липучками» можно. Но только теоретически.
Каждый кирпич, когда его начнут надувать, превратится в округлую фигуру со множеством складок. Соединить такие элементы между собою при помощи липучек не удастся. Как же быть? Есть два пути. Первый — это сделать кубик, который после наполнения сохранит прямоугольную форму. Для этого его стенки изнутри следует соединить множеством дополнительных перегородок и стяжек. Но такие блоки будут слишком сложны в изготовлении и дороги. А еще проще — делать дома цельными. Каждый видел, наверное, надувные замки, в которых детишки прыгают в свое удовольствие. По такому же принципу может быть сделан дом для туристов. Носить его за плечами в рюкзаке, конечно, тяжеловато. Но для путешественников с автомобилем его вес вполне приемлем. К слову сказать, цельный надувной дом окажется даже легче, чем набор блоков для его строительства.
Тем не менее Экспертный совет ПБ отмечает стремление Александра ОГОРОДОВА к изобретательству и желает ему новых идей.
Еще раз просим читателей более тщательно оформлять предложения. Их текст печатайте на компьютере или пишите от руки, но только разборчивым почерком! (На некоторые письма мы не смогли дать ответ из-за невозможности понять почерк писавшего.) Письма снабжайте, пожалуйста, четкими рисунками.
ФОТОКОНКУРС
«Наука — это красиво»
МИР УВИДИТ ВАШИ ОТКРЫТИЯ!
Издание «Наука и технологии России — STRF.ru» приглашает к участию в конкурсе фотографии «Наука — это красиво!» всех, кто хотел бы представить миру многообразие и красоту науки. Фотографии на конкурс принимаются со 2 марта по 20 мая по адресу: [email protected]
Основные номинации:
«Мир, скрытый от наших глаз».
«Наука — значит развитие».
Специальная номинация от компании «Нанотехнология — МДТ»: «Эстетика в «железе». Для участия в этой номинации принимаются работы, где в композиции присутствует оборудование компании или элементы ее фирменного стиля. Победитель получит специальный приз от компании.
Призы:
1 место — 15 000 рублей,
2 место — 9000 рублей,
3 место — 5000 рублей.
Все победители получат памятные дипломы.
Авторы работ, собравшие наибольшее количество откликов по итогам зрительского голосования, получат специальные «Призы зрительских симпатий».
Лучшие работы будут отобраны для участия в выставке «Наука — это красиво!», которая пройдет в Москве, Санкт-Петербурге, Новосибирске и других гостеприимных городах России.
Контактная информация:
Е — mail: [email protected]
Тел.: +7 (495) 930 8850, 930 8707
www.strf.ru
НАШ ДОМ
Печка с магнетроном
В 1946 году инженер американской компании Raytheon Перси Спенсер случайно направил прототип радара, снабженный микроволновым излучателем, на шоколадку, лежавшую на столе. Та тут же расплавилась, и Перси понял, что у него получилось нечто особенное. С той поры микроволновые печи начали свое победное шествие по миру.
Сердце такой печи — магнетрон. Так называется вовсе не некий аппарат из фантастического фильма, а электровакуумный прибор — излучатель микроволн. Точно такой же, какие используются в радиолокаторах для облучения самолетов в небе. Только в данном случае микроволнами облучаются продукты, помещенные в камеру микроволновки; причем они, эти самые лучи, способны пронизывать мясо, картофель или иной продукт по всему объему. Именно потому и процесс приготовления того или иного блюда обычно занимает считаные минуты.
Несмотря на то что микроволновки используются на кухнях уже более полувека, у многих пользователей остаются сомнения: а не опасно ли пользоваться агрегатом, излучающим микроволны? Не может ли излучение проходить через окошко печи и причинять вред хозяину? Не влияют ли микроволны на качество продуктов? Не может ли излучение микроволновки испортить персональный компьютер, телевизор, сотовый телефон и прочую тонкую электронику?
Изобретатель Перси Спенсер.
Ответ на все вопросы будет однозначный. Нет, микроволны при закрытой дверце не могут вырваться из печи наружу, поскольку отражаются от металлической сетки, заделанной в стекло окна, а также от ее металлических стенок. Нет, микроволны не снижают полезность продуктов. Напротив, большинство исследований показывает: поскольку температура в микроволновой печи ниже, чем при готовке на плите или в духовке, а время приготовления пищи в ней меньше, то витамины в пище сохраняются лучше. Нет, закрытая печь не препятствует работе беспроводных сетей и бытовой электроники, поскольку электромагнитное излучение, как уже говорилось, не может выйти из печи наружу…
Однако во всех случаях следует оговориться: следите, чтобы дверка была всегда плотно закрыта, а сама печь и ее экран исправны. Кроме того, внимательно читайте инструкцию и руководствуйтесь в повседневной практике здравым смыслом.
Чтобы вы яснее понимали, что к чему, несколько слов о физике работы магнетрона и особенностях устройства типовой микроволновки.
Трансформатор, диод и конденсатор повышают сетевое напряжение со 127 или 220 вольт до 3000 вольт, а также превращают его из переменного в постоянное. Высокое напряжение подается на магнетрон. Излучатель генерирует микроволны, посылаемые антенной через волновод в рабочую камеру печи, где они отражаются ее металлическими стенками. Тарельчатая подставка вращает пищу в микроволновом поле, чтобы она нагревалась равномерно. В моделях без такой подставки для равномерного распределения мощности микроволн по объему камеры используется небольшая вращающаяся лопасть на конце волновода.
Вид и схема магнетрона:
1 — магнит; 2 — катод; 3 — электрическое поле; 4 — резона тор; 5 — анод; 6 — магнитное поле; 7 — поток электронов; 8 — проводник.
Сам же магнетрон работает так (см. схему). Высокое напряжение подается на нагреваемый катод. Он испускает электроны; которые притягиваются к положительно заряженным секторам анода. Магнит создает силовое поле, которое заставляет направленный от центра к периферии поток электронов вращаться. При этом в потоке формируются «острия». При прохождении каждого «острия» мимо полости, служащей резонатором, в нее поступает дополнительный отрицательный заряд, который затем утекает из нее до прибытия следующей «спицы». Эти колебания в силе заряда вызывают в резонаторах электромагнитное поле с частотой 2,45 ГГц. Присоединенная антенна резонирует на этой частоте, излучая микроволны.