Kniga-Online.club
» » » » Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория»

Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория»

Читать бесплатно Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория». Жанр: Газеты и журналы / Периодические издания / Сделай сам / Хобби и ремесла год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
требованиям, предъявляемым к модельным организмам. К тому же геном мыши весьма схож с геномом человека.

Генетические сравнительные исследования уже многое прояснили в отношении строения и функционирования человеческого тела. Дальнейшие исследования принесут дополнительные сведения.

Другие создания, вроде полосатой перцины, иглобрюха [родственного горчице сорняка из семейства крестоцветных], резушки Таля (Arabidopsis thaliana) и палочки Пфайфера (Haemophilus influenzae), выступают в роли модельных орга низмов и изучены в разной степени. Модельные организмы и приспособления, требуемые для их изучения, вызывают в памяти ситуации из классической описательной биологии с образами бесчисленных исследователей, склонившихся над микроскопом или щурящихся сквозь стекла очков во время поездок по экзотическим местам, где можно увидеть организмы в их естественной среде обитания (вспомним Чарльза Дарвина на Галапагосских островах).

Физика — биология — химия

Несмотря на значимость модельных организмов для биологов, поле деятельности современной биологии значительно расширилось во многом благодаря нахлынувшим туда представителям других отраслей знаний, чья деятельность преобразила сам подход к изучению биологии.

Чтобы понять, как произошло это преображение, взглянем иначе и шире на центральное учение молекулярной биологии. Описательная биология сосредоточивалась на видимых признаках, но находила мало объяснений, связанных с этими признаками молекулярных механизмов. Затем пришел черед химии, занимавшейся химическими реакциями внутри живых существ, прояснявшими биологические процессы. Но главная трудность состояла в том, что управляющие живыми системами молекулы были слишком малы, чтобы их можно было для разглядывать в микроскоп.

Следующими нахлынули физики, посредством рентгеновской кристаллографии выявившие двойную спираль ДНК (вспомним биолога Джеймса Уотсона и физика Фрэнсиса Крика, воспользовавшихся данными рентгеновского кристаллографа Розалинды Франклин). Итак, хорошие вести заключались в создании представления об общем строении ДНК, а плохие — в невозможности разглядеть подробности ее строения из-за малых размеров. ДНК содержит такое огромное количество парных оснований нуклеотидов, что их определение и выписывание оказалось сложной задачей.

Итак, положение биологии в 1980-е годы было следующим: молекулярная биология сосредоточилась на работе с крайне малыми объектами; классическая описательная биология ограничилась наблюдением той части биосферы, которая была доступна зрению, пусть и сквозь окуляр микроскопа. Многие детали на стыке микро- и макроскопических областей биологии оказались совершенно необъяснимыми (рис. 4.6).

Рис. 4.6. Общая картина биологии

Переход от большого масштаба к малому происходил медленно. Изучение молекул с химической точки зрения кое-что проясняло, но продвижение шло черепашьим шагом, а черепаха, увы, не модельный организм.

В середине 1980-х годов некоторых биологов осенило: почему бы не изучить весь состав ДНК живого организма, так называемый геном? Более того, посредством отдельных модельных организмов прийти к конечной цели — геному человека. Это привело к очередному наплыву в биологию приборостроителей, программистов, предпринимателей и появлению одного неуемного исследователя — Дж. Крейга Вентера.

Составление карты генома человека. Великие задачи требуют величественных орудий.

Прежде чем описывать все перипетии, увенчавшиеся в итоге составлением карты генома модельных организмов и человека, вникнем в подробности того, как устанавливается последовательность оснований плотно упакованной молекулы ДНК. Оказывается, геном человека состоит из 3 млрд. парных оснований нуклеотидов. Если считать их по одному в секунду, на это уйдет почти 100 лет. Очевидно, для их определения потребовался более быстрый способ, для чего понадобилось усовершенствовать несколько методов.

Электрофорез. В 1937 году шведский биохимик Арне Тиселиус (Тизелиус) разработал метод разделения заряженных частиц во взвеси на основе их массы и заряда (рис. 4.7). Заряженная частица в электрическом поле под действием его силы ускоренно движется в сторону противоположно заряженного электрода. Погруженная в среду (гель) частица тормозится под действием силы трения. При равенстве электрической силы и силы трения частица движется с постоянной скоростью, именуемой конечной.

Рис. 4.7. Установка для электрофореза

Данный подход знаком парашютистам, которые благодаря уравновешиванию их веса с силой трения опускаются на землю с постоянной, а не с возрастающей скоростью.

Для выделения частиц в геле Тиселиус применил красители. Данный подход он впервые опробовал при разделении белков в растворе — а в 1948 году был удостоен за свою работу Нобелевской премии по химии. С тех пор его метод использовался в опытах с множеством частиц при движении в различных средах. А для их выделения существуют несколько различных приемов.

Рестрикционные ферменты. Создание рестрикционных ферментов началось весьма необычно: в опытах с бактериофагами. Бактериофаги (или фаги) представляют собой вирусы, атакующие клетки бактерий, внедряя свои ДНК в клетку-хозяина, который затем плодит данный вирус. Фагов независимо друг от друга открыли в 1917 году бактериологи Фредерик Туорт из Великобритании и Феликс д'Эрелль из Франции. Опыты на бактериофагах получали все больший размах благодаря их возможности убивать опасные для человека бактерии. Однако интерес к ним упал после открытия пенициллина и других химических антибиотиков.

Бактериофаги столь многочисленны (по оценкам, их количество составляет 1030), что их общая биомасса значительно превышает общий вес населения Земли.

Они почти целиком состоят из белков и ДНК (рис. 4.8). Будучи вирусами, они не могут жить без хозяина. Ввиду простоты своего устройства они оказываются идеальными испытуемыми для получения сведений о жизнедеятельности и их самих, и их хозяев.

Рис. 4.8. Бактериофаг

Хвостовые нити

Хамилтон Смит, микробиолог из университета Джонса Хопкинса[8] в конце 1960-х работал с Haemophilus influenzae Rd и фагом Р22. Случайно бактерии и фаги стали выращивать вместе. Смит заметил, как активность ДНК у фага все время падала, что указывало на расщепление ДНК фага чем-то внутри бактерии. Смит со своими сотрудниками выделил и очистил ответственный за расщепление фермент и установил его механизм: белковый фермент внутри Н. influenzae расщепляет ДНК фага, выявляя определенную цепь из шести парных оснований и расщепляя ДНК — неизменно в одном и том же месте и одним и тем же способом.

Такой фермент получил название рестрикционного. Помимо этого фермента Н. influenzae Rd располагает еще одним ферментом, метилазой, защищающей ДНК бактерии от подобной участи. Фермент метилаза присоединяет метиловую группу к нуклеотидным основаниям цитозина или аденина в ДНК бактерии. Метилирование настолько изменяет молекулу ДНК, чтобы рестрикционный фермент все еще мог распознать место своего подсоединения, не вмешиваясь при этом в обычный ход воспроизводства или метаболизма самой бактерии.

С тех пор удалось открыть тысячи ферментов, расщепляющих ДНК на определенных участках. Отрыты были и ферменты, скрепляющие вместе куски ДНК. В итоге всех этих открытий молекулярные биологи располагают ныне набором белковых ферментов, позволяющих им разрезать или склеивать ДНК в заданных местах.

Сенгеровский метод обрыва цепи [замещающим нуклеотид] дидезокси[рибонуклеозидтрифосфатом] для секвенирования ДНК. В 1977 году биохимик

Перейти на страницу:

Журнал «Домашняя лаборатория» читать все книги автора по порядку

Журнал «Домашняя лаборатория» - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Интернет-журнал "Домашняя лаборатория", 2007 №11 отзывы

Отзывы читателей о книге Интернет-журнал "Домашняя лаборатория", 2007 №11, автор: Журнал «Домашняя лаборатория». Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*