Станислав Зигуненко - 100 великих достижений в мире техники
Такие материалы, способные к «самолечению», ученые и инженеры пытались создать еще давным-давно. Поначалу они создали материалы, в структуре которых содержались микрокапсулы с клеящим составом. Если возникает трещина, клей из разорванных капсул заполняет ее и застывает на воздухе или при смешивании с отвердителем из других капсул. Именно таким способом ныне сами собой заклеиваются пробитые шины на некоторых автомобилях.
Людвиг Леблер и Франсуа Турнилак демонстрируют самовосстанавливающуюся резину
Другой известный подход, позволяющий многократно восстанавливать разрушения, состоит в использовании полимеров, модифицированных компонентами, которые способны образовывать обратимые межмолекулярные связи. Связи разрываются, например, при нагреве и полностью восстанавливаются при охлаждении.
Лет двадцать тому назад появились и первые сведения о сплавах с «памятью». Однако до сих пор они считаются своего рода экзотикой и широкого распространения так и не получили. Отчасти это происходит из-за дороговизны таких материалов и сложности их получения.
Секрет метода получения эластичного, как резина, и способного к полноценному самолечению материала заключается в использовании надмолекулярных связей.
«Обычная резина состоит из длинных поперечно связанных между собой полимерных цепочек, благодаря которым она может сильно растягиваться, а затем восстанавливать форму, – поясняет профессор. – Такие же свойства материала мы получили, смешав два сорта небольших молекул. Одни молекулы способны соединяться своими концами только с двумя другими молекулами, а другие – с тремя или более молекулами»…
В смеси между ними возникают водородные связи, причем первые молекулы могут участвовать только в формировании длинных цепочек, а вторые благодаря способности к дополнительным связям еще и образуют поперечные соединения между цепями.
Если такой материал разрезать или разорвать, прочные ковалентные связи внутри молекул сохранятся, а нарушатся более слабые водородные между молекулами. Концы молекулярных цепочек остаются активными, и, если разрыв соединить, прочность полностью восстановится примерно за пятнадцать минут. Но если упустить момент, то возможность к «самолечению» будет утрачена примерно за сутки.
На основе своего открытия исследователи обещают вскоре разработать целый класс материалов, поскольку в качестве мономеров двух сортов тут могут выступать разные молекулы, придающие веществу нужные свойства. Причем их можно будет производить из широко доступных и дешевых ингредиентов – жирных кислот растительных масел и мочевины. Они также легко разлагаются при нагреве, экологически безопасны, не требуют катализаторов при производстве и могут быть использованы повторно.
«В результате данного открытия может быть решена, в частности, такая неприятная для женщин проблема, как порванные чулки или колготки, – обещает профессор. – Вскоре они сами будут восстанавливаться в течение 15 минут»…
Как соткать… ракету?
Как и положено, на Санкт-Петербургском гардинно-кружевном объединении вяжут почти невесомые кружева. Машины как бы самостоятельно управляют перемещениями сотен тончайших нитей, которые, переплетаясь, образуют сложный узор. Работа идет быстро, она давно автоматизирована. Но ныне, похоже, текстильщики начали использовать свои приемы в электронике и даже в авиационно-космической отрасли.
Последователи Жаккара. Началось же все с того, что 200 с лишним лет назад французский изобретатель Жозеф Мари Жаккар применил для управления механизмами перфокарты. Такие же, какие много позднее стали применять в электронных вычислительных машинах. Основы двоичной системы счисления, без которой немыслимы современные компьютеры, заложили именно текстильщики: есть отверстие в перфокарте – нить основы увлекается механизмом наверх, нет – остается внизу… По имени изобретателя и пошло название – жаккардовые машины.
Ныне остроумное изобретение прошлого используют и на иной лад. Видели ли вы когда-нибудь работу жгутовщицы? Так называется работница, которая плетет соединительные электрические кабели для электрических схем. Например, надо изготовить обычный жгут, соединяющий два штепсельных разъема. Сначала жгутовщица в нужном порядке раскладывает отдельные проводки. Потом сплетает их по нескольку штук в косички, переплетает все вместе и туго обматывает диэлектрической нитью. А сверху изолирует специальной тканью. Если нужен более сложный, разветвляющийся жгут, у которого по длине на определенных расстояниях должны быть отводы, – работа идет еще медленнее. Жгутовщица предварительно отмеряет провода необходимой длины, раскладывает их на специальном шаблоне с гвоздиками, привязывает и начинает плести…
Старые жаккардовые машины дали толчок развитию новых современных технологий
Так вот, кроме кружев на этих давным-давно известных жаккардовых машинах здесь, в Санкт-Петербурге, научились изготавливать совершенно неожиданные вещи: кабели и шлейфы для электроники, монтажные платы, теплоизмерительные приборы… Словом, изделия, не имеющие, казалось бы, ни малейшего отношения к кружевам и гардинам.
Процесс создания печатной электронной схемы, возможностями которого мы еще недавно так восхищались, сродни фотографическому. Однако если получение фотоснимка состоит примерно из десятка операций, то изготовление печатной платы включает 72 операции! Причем 28 из них требуют высоких температур. А применяемые химические реактивы – не чета проявителю и закрепителю. Они высокотоксичны, то есть, попросту говоря, ядовиты. Чтобы отходы радиоэлектронной промышленности не загрязняли природу, необходимо строить дорогостоящие очистные сооружения. А это значит, что производство намного удорожается. Но вред, наносимый природе, все же не удается свести к нулю.
Нашлись люди, которые посмотрели на эту технологию новыми глазами. Занимались они электротехникой, электроникой, а пришли работать в текстильную промышленность, чтобы создать новую, удивительную технологию будущего. По словам одного из разработчиков, начальника лаборатории Михаила Николаевича Мокеева, так получилось вот почему.
Основой для печатных плат обычно служит текстолит – текстиль, пропитанный составом, придающим ему жесткость и высокую прочность. Потом в этой пластине сверлят монтажные отверстия, на поверхность с помощью десятков операций наносят печатную электросхему… А что, если ее сразу соткать вместе с текстильной основой? Основу ткать диэлектрической, изолирующей нитью, а элементы схемы – электропроводной. Ведь могут же текстильщики выткать на гардинах всяческие розочки и завитушки. Узор из токопроводящих дорожек, монтажных площадок и отверстий не сложнее! Машины для такой технологии у текстильщиков уже давным-давно есть, только нужно немного их дооснастить.
Что касается изготовления кабелей, то ткачи могут выткать любые сложные разветвления на своих автоматических станках с программными устройствами. Ведь исстари плели на жаккардовых машинах и кружева, и тесьму, и декоративные шнуры. Почему бы не плести и кабели? Причем на ширине станка помещается их одновременно до сотни. Работу ста жгутовщиц выполняет одна ткачиха! Изделия получаются очень качественные – гибкие, ровные и даже красивые.
Если требуется прочная, жесткая плата – наподобие стеклотекстолитовой (на таких сейчас в основном делается печатный монтаж), – ткачи соткут и такую. Для специальных технических тканей у них есть станки, которые могут прессовать вместе нити с силой в несколько тонн! Есть и недавно полученные учеными новые химические волокна, которые прочнее стали. Для дополнительной жесткости можно пропитать их эпоксидными смолами, полиуретановыми массами.
Текстильщики в космосе. В последние десятилетия дизайнеры стали подсказывать кутюрье, как нужно кроить, чтобы разрабатываемая ими одежда была не только модной, но и технологичной – прежде всего содержала поменьше швов. И сейчас, например, на кафедре технологии швейного производства Московского государственного университета дизайна и технологии (МГУДТ), которой руководит профессор Е.Г. Андреева, можно увидеть трикотажные платья, у которых вообще нет ни единого шва. Более того, тканые технологии постепенно проникают и в такие отрасли производства, где раньше об их применении никто и слыхом не слыхивал. Взять хотя бы… авиацию.
Конструкторы первых «летающих этажерок» обтягивали их перкалью – тканью, которая была создана текстильщиками специально для авиаторов. Затем, правда, деревянно-тряпичные аэропланы превратились в дюралевые самолеты. Потом в ход пошли титановые сплавы. Казалось, период сотрудничества с текстильщиками современные авиационные технологи должны забыть. Да не тут-то было! Сейчас все чаще слышишь, что материаловеды предпочитают металлическим сплавам композитные материалы.