Kniga-Online.club

Александр Фролов - Новые источники энергии

Читать бесплатно Александр Фролов - Новые источники энергии. Жанр: Техническая литература издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Ощепков ввел термин «кэссор», обозначающий концентратор энергии окружающей среды. В литературе по данной теме, встречается сочетание «С-кэссор», обозначающее конденсаторный (емкостной) преобразователь тепловой энергии среды в электроэнергию.

Задачи, которые ставил Ощепков, выходят за рамки обычных тепловых насосов. «Энергетика будущего, на мой взгляд, это энергетика электронная. Она должна решить самую важную задачу – не просто брать тепло из окружающего пространства, но преобразовывать его в электроэнергию. В этом я вижу величайшую научнотехническую проблему современности. Научная и инженерно-конструкторская мысль ищут пути для ее решения». Сотрудники института Ощепкова, создали теорию, и выполнили расчеты по конструированию электронных установок для получения электрического тока в результате преобразования энергии окружающей среды. Созданы и работают несколько экспериментальных электронных установок, преобразующих энергию окружающей среды непосредственно в электрический ток. В специально созданных схемах из резисторов и особым образом обработанных полупроводниковых диодов (в них создан «грубый паллиатив» потенциального барьера) удалось создать устройство, в котором генерируется напряжение величиною более десяти вольт.

Ощепков писал: «На алтарь затратной экономики министерства и ведомства долгие годы приносили и продолжают приносить невосполнимые природные богатства – уголь, нефть, газ. Мало того, что их запасы на глазах истощаются, они и превосходное ценное сырье для химической промышленности. Их сжигают в топках электростанций, загрязняя атмосферу, что может вызвать, в конце концов, катастрофический «парниковый эффект», который с точки зрения опасности для человечества ученые ставят в один ряд с термоядерной катастрофой. Есть еще один парадокс традиционной технологии в энергетике – огромная энергия сначала производится в одном месте, а затем ее по дорогостоящим и не всегда надежным линиям электропередачи транспортируют нередко за тысячи километров к потребителю. Если это квартира, то… к лампочке. Не слишком ли сложно и расточительно? Все можно организовать иначе, проще, дешевле, надежнее, эффективнее. Пусть мощные энергосистемы обеспечивают электроэнергией крупные заводы и производства. Массового же потребителя, особенно в сельской местности Севера России и Сибири, можно снабдить мини-установками, преобразующими энергию среды в электричество мощностью один-два киловатта. Этого достаточно, чтобы обеспечить одну квартиру энергией для освещения, отопления и прочих нужд. Размер одной такой установки – не более настольной лампы. Если человечество хочет жить в гармонии с окружающей средой, оно должно сделать все, чтобы научиться получать энергию, не нарушая экологического равновесия в природе». Эти слова Профессора Ощепкова актуальны и сегодня, в 2012 году.

В журнале Техника Молодежи, № 11, 1983 год, была рассмотрена классификация основных методов инверсии тепловой энергии среды. Мы возьмем ее за основу, но дополним новыми методами.

Фотоинверсия. Известны свойства некоторых веществ (люминофоров) переизлучать падающий на них свет, но с иной, увеличенной длиной волны (так называемая «стоксова люминесценция»). Позднее были обнаружены случаи уменьшения длины волны переизлученного света, то есть увеличения энергии квантов (это так называемая «антистоксова люминесценция»). Прибавка к энергии квантов происходит здесь за счет трансформации собственной тепловой энергии люминофора в энергию люминесцентного излучения. Из-за отбора тепловой энергии люминофор охлаждается, и понижение его температуры компенсируется притоком теплоты из окружающей среды. Следовательно, энергетическая прибавка в люминесцентном излучении происходит, в конечном счете, путем концентрации тепловой энергии окружающей среды, и эта прибавка может быть очень значительной. Теоретически она может достигать 160 %, то есть люминофор может выдавать энергии на 60 % больше, чем получает ее в виде облучения. В настоящее время ведутся интенсивные работы по практическому применению этого эффекта (охлаждение объектов, люминесцентные мазеры, люминесцентное фотоумножение и прочее.).

Химическая инверсия. Энергетически открытые каталитические системы обладают способностью накапливать энергию, и существовать в неравновесном термодинамическом состоянии. Этот процесс возможен, благодаря сочетанию экзотермической реакции, протекающей на катализаторе, с эндотермической реакцией (охлаждения) катализатора. Эти, способные к самоподдержанию (и самовосстановлению) реакции, реализующиеся на поглощении рассеянной теплоты среды, открывают перспективы создания новых технологических процессов.

Существуют гальванические элементы, работающие на эндотермических реакциях. Энергия для протекания этих реакций отбирается от кристаллической решетки конструкции, в силу чего корпус элемента охлаждается (покрывается изморозью) и к нему непрерывно стекает (концентрируется) тепловая энергия окружающей среды. Следовательно, электрическая энергия в таком химическим источнике энергии, частично, обусловлена поглощением энергии окружающей среды.

Механоинверсия. Существуют различные способы использования кинетической энергии молекул воздуха. Эти устройства могут быть пассивные или активные, то есть струйные и потоковые технологии.

Гравинверсия. Поскольку гравитационное поле делает среду неоднородной, то это должно вносить «искажения» в термодинамический процесс выравнивания состояний, характеризуемый показателем возрастания энтропии.

Это обстоятельство отмечали еще Максвелл и Циолковский, которые высказали идею о том, что в атмосфере, под воздействием гравитационного поля, должен возникать вертикальный градиент температур. Циолковский предсказал, что указанный градиент должен зависеть от молекулярного состава газа.

Современная теория таких генераторов энергии подробно разработана Профессором В. Ф. Яковлевым, который рассчитал зависимость градиента температур от молекулярного состава газа. На основе этого эффекта им, совместно с Е. Г. Опариным, предложена идея принципиально нового генератора энергии, состоящего из двух труб, наполненных разными газами. рис. 205.

Рис. 205. Гравитационная инверсия тепловой энергии в схеме Яковлева – Опарина

Из схемы очевидно, что температура газов в двух трубках, в верхней части будет существенно отличаться друг от друга, и это можно использовать для получения энергии, к примеру, с помощью термоэлементов.

Термоинверсия. Рассмотрим поршневой двигатель, работающий на впрыскивании в камеру с цилиндром негорючего сжиженного газа (азот, гелий). Давление образующегося газа будет двигать поршень, при этом цилиндр будет охлаждаться, так как газ расширяется, а к нему устремится поток тепловой энергии из окружающей среды. Работа такого двигателя, в сумме, будет складываться не только из работы расширяющихся газов, но также и будет некоторая прибавка за счет использования тепловой энергии окружающей среды.

Электроинверсия. В данной области исследований, большие надежды П.К.Ощепкова были связаны с полупроводниковыми преобразователями тепла в электроэнергию. Существуют и другие методы. Николай Емельянович Заев запатентовал способ концентрации энергии окружающей среды путем использования свойств нелинейного конденсатора и нелинейного ферромагнетика. Мы рассмотрим их позже подробнее.

Покажем некоторые технологии и идеи по данной теме. Важное изобретение в области механической инверсии тепловой энергии, сделал автор из Санкт-Петербурга, Михаил Порфирьевич Бешок ([email protected]). Его статья «Энергия воздуха» опубликована в журнале «Новая Энергетика» № 1, 2003 год. В декабре 2010 мы общались по телефону, и он согласился открыто представить свою идею читателям данной книги. Суть его изобретения заключается в следующем: на поверхности пластины создается рельеф с размерами, порядка 1-10 длин свободного пробега молекулы воздуха (это размеры порядка элементов современных микросхем, около 500-50 нанометров). Другая сторона пластины имеет ровную поверхность, рис. 206. Цитирую Михаила Порфирьевича:

Рис. 206. Метод создания градиента давления воздуха

«Как известно из молекулярно-кинетической теории газов, молекулы воздуха хаотически (вне зависимости от скорости потока воздуха) движутся со скоростью 500 метров в секунду, при обычных условиях атмосферного давления и комнатной температуры. Масса одного кубического метра воздуха составляет более 1 кг. Нетрудно подсчитать, что в атмосфере содержится огромное количество энергии, ее можно было бы направить «на работу в турбину», но движение молекул воздуха хаотично, и принято считать, что энергия в такой среде может только поглощаться и рассеиваться, и процесс этот, якобы, необратимый. Действительно, в привычных мерках пространства и времени, молекулы движутся совершенно беспорядочно, количество их огромно, и процесс, сопровождающийся увеличением энтропии, в этом случае наиболее вероятен. Между тем, движение молекулы на участке «свободного пробега», в промежутке времени между столкновениями предстает как упорядоченное, линейное и предсказуемое. Среднее расстояние, которое преодолевает молекула за это время, составляет десятки нанометров.»

Отметим, что появившиеся в последние годы нанотехнологии позволяют конструировать требуемые элементы преобразователя энергии, имеющие микрорельеф, используя, например, нанотрубки. Микрорельеф порядка 100 нм – это несложная техническая задача и для изготовителя микросхем.

Перейти на страницу:

Александр Фролов читать все книги автора по порядку

Александр Фролов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Новые источники энергии отзывы

Отзывы читателей о книге Новые источники энергии, автор: Александр Фролов. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*