Kniga-Online.club

Вадим Грибунин - Цифровая стеганография

Читать бесплатно Вадим Грибунин - Цифровая стеганография. Жанр: Техническая литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Рассмотрим влияние некоторой дополнительной информации на распределения контейнеров и стего и, соответственно, на стойкость стегосистемы. Пусть некоторые внешние события влияют на распределение контейнеров, например, выпуски новостей или погоды в известной «задаче заключенных». Эта дополнительная информация обозначается Y и известна всем участникам. Соответственно изменим нашу модель и определение стойкости. Определим средние вероятности вида для ошибки 1 рода и для ошибки 2 рода, где α(y) и β(y) означают, соответственно, величину вероятностей ошибок 1 и 2 рода для Y = y.

Условная относительная энтропия (УОЭ) между РС и PS, принадлежащих одному алфавиту Х, зависимая от переменной Y, определяется в виде

(4.6)

Из неравенства Иенсена [10] и из выражения (4.5) следует, что

(4.7)

Стегосистема с дополнительной информацией Y, контейнерами С и стего S называется ε-стойкой против пассивного противника, если условная относительная энтропия . В качестве примера использования в стегосистеме внешней информацией укажем «классическую» задачу Г.Симмонса, в которой заключенные скрытно обмениваются информацией о побеге. Вероятность передачи сообщения о побеге в темную ночь выше по сравнению со светлой ночью. Это общеизвестный факт не только для лиц, совершающих побеги, но и для их тюремщиков, ужесточающих контроль за возможными каналами скрытой передачи информации. Поэтому использование общеизвестной дополнительной информации в стегосистеме облегчает задачу нарушителя. Можно сказать, что ε-стойкая стегосистема с дополнительной информацией Y обеспечивает более высокую скрытность связи по сравнению с аналогичной ε-стойкой стегосистемой без этой информации.

4.3. Стойкость недетерминированных стегосистем

В предыдущем параграфе было показано, что на основе анализа распределений контейнеров и распределений стего выявляется факт использования стегосистемы. Для этого в рассмотренной теоретико-информационной модели предполагается, что нарушитель знает точные вероятностные характеристики контейнеров, стего, скрываемых сообщений и ключей. Также в модели предполагается, что передаваемые стегограммы и пустые контейнеры не претерпевают никаких искажений в процессе их доставки по каналу связи, а отправитель скрываемых сообщений выбирает только такие контейнеры, характеристики которых совпадают с характеристиками всего множества контейнеров. В итоге любое отклонение статистики наблюдаемого нарушителем в канале связи сообщения от среднестатистических характеристик пустых контейнеров должно квалифицироваться как факт выявления стегоканала. Очевидно, что такая идеальная модель не вполне адекватна реалиям информационно-скрывающих систем. Во-первых, нарушитель знает характеристики не действительно использованного отправителем контейнера, а усредненные характеристики множества сообщений некоторых источников, которые потенциально могут быть использованы в качестве контейнера. Во-вторых, все известные источники возможных контейнеров в силу их природы являются нестационарными, то есть их точных оценок не существует. В-третьих, скрывающий информацию для встраивания скрываемой информации волен выбирать из всего множества такие контейнеры, характеристики которых отличаются от известных нарушителю характеристик этого множества. Более того, отправитель может подбирать такие контейнеры или специально их генерировать, чтобы при встраивании в них скрываемых сообщений характеристики сформированного стего были бы неотличимы от среднестатистических характеристик пустых контейнеров. В-четвертых, в современных телекоммуникационных системах передаваемые избыточные сообщения, как правило, сжимаются с внесением некоторых допустимых для их получателей искажений, что изменяет их характеристики. Например, речевой сигнал кодируется методами линейного предсказания речи, изображения сжимаются алгоритмами JPEG, MPEG или H.263. И, в-пятых, канал связи может вносить помехи в передаваемые информационные потоки. А если канал идеален, то отправитель для маскировки может сам зашумлять передаваемые стего и пустые контейнеры такими помехами, которые в допустимых пределах искажая передаваемые сообщения, в достаточной для скрытия степени модифицируют статистику стего и контейнеров.

Перечисленные причины приводят к модели стегосистемы, в которой нарушитель может быть способен определить, что статистика наблюдаемых им в канале последовательностей отличается от известной ему статистики контейнеров, но он не способен установить причину этих отличий. Таким образом, нарушитель хотя и подозревает о существовании скрытого канала, но не может доказать или опровергнуть этого. Требуемые доказательства могут быть получены, если нарушитель сумеет прочитать скрываемое сообщение. Методами теории информации опишем стойкость стегосистемы к чтению скрываемых сообщений.

В работе [2] несколько с иных позиций, чем в подходе Качина [3] определяется стойкость стегосистемы. Стегосистема называется теоретико-информационно стойкой, если нарушитель не способен получить никакой информации о встроенном сообщении, анализируя перехваченные стего при условии знания статистических характеристик пустых контейнеров. В рамках этого определения подсчитывается взаимная информация между скрываемыми сообщениями М и множествами стего S и соответствующих им контейнеров C. В теоретико-информационно стойкой, или, иначе говоря, совершенной стегосистеме должно выполняться равенство . Как известно из теории информации [10], взаимная информация может быть определена через безусловную и условную энтропию:

. (4.8)

Это дает фундаментальное условие стойкости стегосистемы вида

. (4.9)

Такое определение теоретико-информационной стойкости стегосистемы очень напоминает соответствующее определение теоретико-информационной стойкости системы шифрования информации. Если неопределенность нарушителя относительно сообщения М не уменьшается при перехвате криптограммы Е, то по определению К.Шеннона данная система шифрования является совершенной [7]:

. (4.10)

Заметим, что выражения (4.9) и (4.10) указывают, что нарушитель не способен определить ни одного бита защищаемого сообщения. При этом для системы шифрования точно известно, что в криптограмме это сообщение содержится. Для стегосистемы выражение (4.9) может выполняться в следующих случаях:

1. Стегосистема не используется.

2. Осуществляется скрытая передача информации, используется совершенная к установлению факта наличия скрытой связи стегосистема. Если нарушитель не способен определить факт наличия скрываемого сообщения, то тем более он не способен прочитать ни одного бита этого сообщения.

3. Осуществляется скрытая передача информации, нарушитель способен определить факт наличия скрытой связи. Однако он не способен прочитать ни одного бита скрываемого сообщения.

Например, третий случай был описан в предыдущем параграфе при вложении безизбыточных скрываемых сообщений в равновероятные случайные контейнерные последовательности по функции встраивания однократная подстановка. Сформированные таким образом стего легко выявляются нарушителем на фоне обычных избыточных сообщений. Однако прочитать эти сообщения принципиально невозможно, если при встраивании используется случайная равновероятно распределенная ключевая последовательность [Шен].

Выражение (4.9) означает, что неопределенность нарушителя относительно сообщения М не должна уменьшаться при знании им стего S и контейнера C, то есть М должно быть независимо от S и С. Исследуем условия стойкости стегосистем. Полагаем, что не только алфавиты S и С, но и их энтропии H(S) и H(С) равны. Рассмотрим два случая.

1. Пусть никакое сообщение М не встраивается в контейнер С. Очевидно, что в этом случае, коль S и С совпадают, то выполняется H(S/C) = H(C/S) = 0.

2. В стего S имеется сообщение М с энтропией H(М) > 0. Очевидно, что при наличии этой встроенной информации у нарушителя появляется отличная от нуля неопределенность относительно S, если известно С и неопределенность относительно С, если известно S: H(S/C)) > 0, H(C/S) > 0. Следовательно, взаимная информация между скрываемыми сообщениями и соответствующими контейнерами и стего уже не может быть равной нулю:

Перейти на страницу:

Вадим Грибунин читать все книги автора по порядку

Вадим Грибунин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Цифровая стеганография отзывы

Отзывы читателей о книге Цифровая стеганография, автор: Вадим Грибунин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*