Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
В некоторых системах NTSC строка 21 несет закрытые титры, т. е. информацию в виде субтитров.
Некоторые невидимые строки используются для вставки испытательных видеосигналов специальной формы, так называемых VITS (Video insertion test signal — сигнал испытательной строки), которые при измерении на приемнике дают ценную информацию о качестве передачи и приема в конкретной зоне.
В видеонаблюдении некоторые производители используют невидимые строки, чтобы вставить информацию вроде маркировки камеры, времени и даты записи и т. п. Эти строки можно также записать на видеомагнитофон, но на экране монитора они остаются невидимыми. Однако информация всегда присутствует в записи, она встроена в видеосигнал. Такая информация надежнее, и ее труднее подделать. Ее можно восстановить специальным ТВ-декодером строк и использовать всякий раз, когда необходимо, показывая маркировку камеры, а также время и дату записи конкретного сигнала и, например, постороннее вторжение в изображение.
Рис. 4.10. Временная диаграмма ТВ-сигнала системы NTSC
Рис. 4.11. Временная диаграмма ТВ-сигнала системы PAL
Видеосигнал и его спектрВ этом разделе рассматриваются теоретические основы ограничений видеосигнала, полосы пропускания и разрешения. Это сложный предмет, требующий знания высшей математики и электроники, но я постараюсь объяснить его на простом и доступном языке.
Большинство искусственных электрических сигналов можно описать математически. Для периодических сигналов, например, таких, как в линиях энергоснабжения, математическое описание очень простое. Периодическую функцию всегда можно представить в виде суммы синусоидальных колебаний, каждое из которых может иметь различную амплитуду и фазу. По аналогии со спектром белого света, она называется спектром электрического сигнала. Чем более периодичен электрический сигнал, тем легче можно его представить и с меньшим количеством компонентов синусоидальных колебаний. Каждый компонент синусоидального колебания можно представить дискретным значением в спектре частот сигнала. Чем менее периодична функция, тем больше компонентов потребуется для воспроизведения сигнала. Теоретически, даже непериодическую функцию можно представить в виде суммы различных синусоидальных колебаний, но только в этом случае придется суммировать намного больше этих колебаний, чтобы получить непериодический результат. Другими словами, спектральное представление непериодического сигнала будет иметь полосу пропускания, более плотно заполненную различными компонентами. Чем мельче детали сигнала, тем выше частоты в спектре сигнала. Очень мелкие детали видеосигнала будут представлены высокочастотными синусоидальными колебаниями. Это равнозначно информации высокого разрешения. У сигнала, наполненного высокими частотами, более широкая полоса частот. Даже единственный, но очень резкий импульс, будет иметь очень широкую полосу частот.
Рис. 4.12. Спектр полосы пропускания композитного видеосигнала
Все вышесказанное является изложением, весьма упрощенным, очень важной спектральной теории Фурье, которая утверждает, что каждый сигнал во временной области имеет свое отображение в частотной области. Спектральная теория Фурье применима на практике — периодические электрические сигналы с широкой полосой пропускания можно исследовать более эффективно при помощи анализа их спектра частот. Не будем углубляться в эту теорию, но заметим для пользователей систем видеонаблюдения: концепция анализа спектра частот очень важна для исследования сложных сигналов, таких как собственно видеосигнал. Видеосигнал — это, пожалуй, один из наиболее сложных электрических сигналов, и его практически невозможно точно описать математически, так как во временной области сигнал постоянно меняется. Видеоинформация (т. е. компоненты яркости и цветности) непрерывно меняется. Однако, поскольку мы формируем видеоизображения посредством периодического сканирования лучом, мы можем аппроксимировать видеосигнал периодическим сигналом. Одним из главных компонентов в этой периодичности будет частота строк — для CCIR и SECAM 25 x 625 = 15625 Гц; для EIA 30 x 525 = 15750 Гц.
Можно показать, что спектр упрощенного видеосигнала состоит из гармоник частоты строк, вокруг которых есть сопутствующие компоненты, как на левой, так и на правой стороне (боковых полосах). Расстояния между компонентами зависят от содержания видеоизображения и динамики двигательной активности. Кроме того, очень важно обратить внимание, что такой спектр, составленный из гармоник и их компонентов, является сходящимся, то есть гармоники уменьшаются по амплитуде с увеличением частоты. Но еще более важный вывод из спектральной теории Фурье состоит в том, что позиции гармоник и их компонентов в спектре видеосигнала зависят только от анализа изображения (соотношение 4:3, чересстрочная развертка 625). Энергетическое распределение видеосигнала между гармониками зависит от содержания изображения. Тем не менее, гармоники занимают точные положения, потому что они зависят только от частоты строк.
Другими словами, динамика видеосигнала и амплитуда определенных компонентов в боковых полосах меняются, но положения гармоник (как поднесущих частот) остаются постоянными.
Рис. 4.13. Пример смещения частотных каналов в телевещании
Это очень важный вывод. В вещательном ТВ он помог найти способ уменьшить спектр видеосигнала до минимума без особой потери деталей. Конечно, всегда можно найти компромисс, но так как основная энергия видеосигнала сосредоточена около нулевой частоты и нескольких первых гармоник, нет никакой необходимости передавать полный спектр видеосигнала. Ученые и инженеры использовали все эти факты, пытаясь найти компромиссное решение: они стремились рассчитать, насколько малую часть полосы пропускания следует использовать при передаче видеоизображения, чтобы не потерять слишком много деталей. Как мы уже упоминали, рассматривая различные ТВ-стандарты, полоса частот будет тем шире, чем больше строк сканирования используется в системе и чем выше разрешение сигнала.
Принимая во внимание ограниченный размер электронного луча (который также определяет минимальные воспроизводимые элементы изображения), физический размер ТВ-экранов, расстояние от зрителя до экрана, сложность и издержки производства телесистем, можно заключить, что для качественного воспроизведения телесигнала достаточно ширины полосы пропускания в 5 МГц. Можно использовать более широкую полосу, но тогда будет очень низким коэффициент достижения качества в сравнении с затратами. Фактически, в телевещательных студиях камеры, записывающее оборудование и мониторы имеют намного более высокие стандарты, со спектрами до 10 МГц. Но они предназначены исключительно для внутреннего пользования, для качественной записи и дублирования (перезаписи). Прежде чем такой сигнал будет модулирован и передан на радиочастоте, он сокращается до 5 МГц, к которым прибавляется около 0.5 МГц для левого и правого каналов звукового сопровождения. На телепередатчике такой сигнал модулируется так, чтобы передавалась только его боковая подавленная полоса частот вместе с полной полосой частот, включая буферную зону разделения, что в сумме равняется 7 МГц (для PAL). Но обратите внимание, что фактически используемая полоса видеосигнала в телевещании равна всего 5 МГц. Для читателей, которым это интересно, заметим, что в большинстве стран, использующих стандарт PAL, видеосигнал модулируется методами амплитудной модуляции (AM), в то время как звук — частотной модуляцией (ЧМ).
Аналогичные соображения учитываются при рассмотрении сигналов NTSC, где полоса частот в телевещании равна примерно 4.2 МГц.
В большинстве систем видеонаблюдения мы не сталкиваемся с подобными ограничениями в отношении полосы частот, поскольку мы не передаем радиочастотно-модулированный видеосигнал. Нам не надо волноваться по поводу помех соседних видеоканалов. В видеонаблюдении мы используем необработанный видеосигнал в том виде, в каком он выходит из камеры, это базовый видеосигнал. Обычно его сокращенно обозначают CVBS (composite video bar signal — полный видеосигнал). Спектр такого сигнала, как уже упоминалось, колеблется в пределах от 0 до 10 МГц — в зависимости от качества источника.
Спектральная емкость коаксиального кабеля как канала передачи гораздо шире. Самый распространенный коаксиальный кабель 75 Ом RG-59B/U, например, может легко передать сигналы с шириной полосы частот до 100 МГц. Конечно, он используется для передачи информации на небольшие расстояния — до двухсот метров, но для большинства систем видеонаблюдения этого достаточно. Различные средства передачи имеют различные ограничения полосы частот. Одни имеют большую, чем коаксиальные кабели, ширину полосы пропускания, другие — меньшую, но у большинства полоса все же значительно шире 10 МГц.