З. Перля - Удар под водой
В кормовом отделении размещаются все главнейшие механизмы торпеды. Воздух, керосин, вода попадают в особый аппарат, который торпедисты называют «подогревательным аппаратом». На пути к этому аппарату сжатый воздух проходит через регуляторы высокого и низкого давления. Первый из них понижает давление воздуха с 200 атмосфер до 60, а второй — с 60 до более низкого, рабочего давления. Лишь после этого сжатый воздух попадает, наконец, в подогревательный аппарат. Здесь воздух, вода и керосин перерабатываются в единый источник энергии движения торпеды. Как это делается?
Как только керосин поступает в подогревательный аппарат, он тут же воспламеняется от специального автоматического зажигательного патрона.
Воздух дает возможность керосину сгорать — температура в аппарате сильно повышается. Вода испаряется, превращается в пар. Вся рабочая смесь из газов от сгоревшего керосина и водяных паров поступает из подогревательного аппарата в главную машину — двигатель торпеды; он невелик и занимает в длине торпеды около метра, и все же этот двигатель развивает большую мощность — в 300–400 лошадиных сил.
Смесь, попадающая в цилиндры двигателя, сохраняет значительное рабочее давление. В цилиндрах могут перемещаться поршни со штоками. Рабочая смесь давит на поршень, толкает его. Затем особый распределительный механизм двигателя выпускает отработавшую смесь и впускает новую, с другой стороны поршня. Давление с одной стороны падает, а с другой — возрастает. Поршень возвращается обратно и тянет за собой шток.
Почти так же работает и обыкновенная паровая машина в паровозе. Только там машина вращает колесо паровоза, а в торпеде она приводит в движение гребные валы. Две стальные трубы, вставленные одна в другую, — это и есть гребные валы торпеды. Они проходят сквозь хвостовую часть торпеды, по ее оси от машины до заднего конца. Работа поршней через кривошипный механизм передается на оба вала, заставляя их вращаться в разные стороны. Валы называются гребными потому, что на каждом из них насажен гребной винт. Само собой понятно, что и винты вращаются в разные стороны.
Но почему их два и почему их заставляют вращаться в разные стороны? Представим себе, что у торпеды всего только один винт. Заставим этот винт вращаться в какую-нибудь одну сторону. Тогда торпеда будет двигаться вперед и вращаться в сторону; крениться. Но работа механизмов торпеды рассчитана на то, что она будет двигаться вперед, не качаясь и не переворачиваясь. Когда два винта вращаются в противоположные стороны, они уравновешивают друг друга — торпеда идет ровно, не кренится, не переворачивается.
Когда газы сделали свое дело — толкнули поршни, заставили вращаться валы, они выходят внутрь полого гребного вала. Через задний открытый конец вала отработанный газ уходит в воду и пузырьками подымается на поверхность. Там пузырьки лопаются и образуют довольно заметный пенистый след.
След торпеды на водеЭтот след — враг торпедистов: он выдает торпеду и нападающую подводную лодку.
Очень часто этот пенистый след портит торпедистам все дело. Противник увидел след, «отвернул», и торпеда прошла мимо. Важнейшее качество торпедной атаки с подводных лодок — ее скрытность — намного уменьшается по вине каких-то воздушных пузырьков, по вине выхлопных газов двигателя торпеды, уходящих в воду. Как избавиться от них?
Прежде всего в торпеде можно заменить двигатель, поставить электромотор, тогда не будет никаких воздушных пузырьков, след торпеды исчезнет. Раньше считали, что этого достигнуть невозможно, так как для питания электромотора нужны настолько тяжелые и громоздкие аккумуляторы, что их негде разместить в торпеде. И размеры и вес торпеды якобы этого не позволяли. Но уже во время второй мировой войны в печати появились сообщения о том, что применяются торпеды с электрическим двигателем. Это значит, что изобретены легкие и емкие аккумуляторы, маловесный, но мощный электромотор. Таким образом найден путь избавления от следа торпеды.
Ту же задачу можно решить и по другому — сделать отходящие газы невидимыми — тогда не будет пузырьков.
Еще десять лет назад в печати начали появляться сведения о торпедном двигателе, работающем не на паровоздушной смеси, а на кислороде и водороде. Выхлопные газы такого двигателя должны превращаться в воду и бесследно исчезнуть в море.
Возможно, что и такое решение задачи бесследности уже достигнуто.
Если снять воздушный резервуар и сфотографировать разрез торпеды, мы увидим на фотографии сложный лабиринт из трубок и клапанов, окутавших корпус подогревательного аппарата, керосиновой баллон и главную машину.
Поперечный разрез торпеды 1 — распределение воздуха между цилиндрами двигателя; 2 — машинный кран для сжатого воздуха; 3 — впускной клапан; 4 — прибор расстояния; 5 — подача керосина в подогреватель; 6 — зажигательный патрон, воспламеняющий керосин в подогревателе; 7 — подогреватель; 8 — регулятор давления воздухаНо здесь нет ничего лишнего. Каждая трубка, каждый клапан служат для определенной работы.
Механические «рулевые»
На всяком корабле есть рулевой. Он держит в руках штурвал, поворачивает им руль, корабль меняет направление. У торпеды есть тоже рули, и ими также нужно управлять. Если этого не делать, торпеда может выскочить на поверхность или, наоборот, нырнуть очень глубоко и удариться о дно. Может даже случиться, что она повернет в другую сторону или пойдет назад и ударит свой корабль.
Там, где кончается хвостовая часть торпеды, укреплены две пары рулей. Одна пара вертикальная, другая — горизонтальная. Каждая пара рулей торпеды имеет своего «рулевого». Но это, конечно, не люди, а механические рулевые.
Горизонтальные рули держат ход торпеды по глубине. Это значит, что они заставляют торпеду держаться на заданном уровне под водой. В разных случаях и уровни эти разные.
Линейный корабль глубоко сидит в воде: для попадания в него торпедой пониже, подальше от броневой защиты, необходимо, чтобы торпеда шла глубже. Малые надводные корабли неглубоко сидят в воде; если пустить торпеду на большой глубине, она может пройти под днищем такого корабля, под его килем. Значит, надо пустить торпеду на небольшой глубине. И надо обеспечить, чтобы заданная глубина не менялась.
Вот тут-то и начинается работа первого рулевого торпеды — гидростатического аппарата.
Мы уже знакомы с устройством гидростата, работающего в мине. В торпеде его устройство повторяется. Цилиндр с подвижным диском и пружиной помещен в торпеде так, что диск сообщается с морской водой, испытывает давление воды. Чем глубже идет торпеда, тем больше это давление; чем мельче идет торпеда, тем меньше и давление. Это давление будет толкать диск гидростата снизу вверх.
Что нужно сделать, чтобы торпеда шла на заданной глубине, например на глубине в 4 метра? Регулируют пружину гидростата таким образом, чтобы при глубине в 4 метра диск занимал в цилиндре определенное положение. Если торпеда пойдет глубже, давление увеличится, диск пойдет кверху. Если торпеда пойдет мельче, диск опустится.
Особые тяги связывают диск с рулевой машинкой, работающей от сжатого воздуха. Рулевая машинка в свою очередь связана с горизонтальными рулями. Если торпеда пошла вниз и нырнула ниже заданной глубины, диск пошел кверху, потянул тягу, заработала рулевая машинка и повернула рули. Торпеда начинает итти кверху. Вот она достигла определенного уровня под водой, но не удержалась на нем и пошла выше. Диск опустился, снова потянул тягу, но уже в другую сторону. Снова заработала рулевая машинка и повернула рули. Приходится торпеде повернуть книзу. Так гидростат не дает торпеде уйти от заданной глубины.
А как же ведут себя гидростат и рули, если торпеда правильно идет на заданной глубине? В этом случае диск остается в покое; все устройство так отрегулировано, что при неподвижном диске горизонтальные рули располагаются в горизонтальнойплоскости, составляют прямое продолжение оперения хвоста торпеды. При этом должен получиться и прямой ход, без скачков вниз и вверх. На самом деле строго прямого хода не бывает: торпеда всегда уходит то вверх, то вида, идет по волнистой линии. Но если нет резких скачков, если отклонения от заданного уровня не велики, не больше 1/2 метра, ход по глубине считается удовлетворительным. Но не один гидростат решает эту задачу.
Устройство современной торпеды 1 — зарядное отделение; 2 — воздушный резервуар, в котором хранится сжатый воздух, питающий двигатель; 3 — запирающий кран для запирания воздуха в резервуаре; 4 — машинные регуляторы для понижения давления; 5 — машинный кран для пропуска воздуха к механизмам; 6 — прибор расстояния, механизм которого закрывает доступ воздуха к механизмам после прохождения торпедой заданного расстояния; 7 — курок для открывания машинного крана (откидывается, когда торпеда выбрасывается из трубы аппарата); 8 — прибор Обри, управляющий ходом торпеды по направлению; 9 — резервуар для керосина; 10 — главная машина торпеды (двигатель); 11 — подогревательный аппарат, в котором подготовляется рабочая смесь для двигателя торпеды; 12 — гидростатический аппарат, управляющий ходом торпеды по глубинеГидростату ровно столько лет, сколько и самой торпеде. Уайтхед изобрел этот прибор, когда стремился заставить мину-лодку Лупписа ходить под водой. Испытания показали, что торпеда делает скачки и уклоняется от заданного уровня на 6–8 метров. Очень часто она зарывалась в песчаное дно или, как дельфин, выпрыгивала и кувыркалась на поверхности воды.