Андрей Кашкаров - Электронные фокусы для любознательных детей
3.2. Увеличение зоны действия пульта дистанционного управления
Пульты дистанционного управления (ПДУ) встречаются в комплекте практически с любой современной бытовой и электронной техникой. Кондиционеры, видеокамеры, музыкальные центры и домашние кинотеатры, СВЧ-печи – таков далеко не полный набор примеров.
Не акцентируя внимание на принципе действия и электронной начинке ПДУ (как правило, все они построены по единому принципу) остановимся подробнее на дальности их действия. Невидимые человеческим глазом ПК-лучи, излучаемые передатчиком характеризуются мощностью и направленностью (рассеянием) излучения.
Луч в типовом ПДУ не сфокусирован, а излучаемый ИК-диодом имеет характер широкого пучка. В условиях ограниченного пространства с множеством препятствий (например, стены квартиры, перегородки, рельеф интерьера) ИК-луч отражается от большинства из них, ослабевает, и все равно приходит к приемнику ИК-сигналов. Наибольшее поглощение ПК-лучи имеют на открытой местности в ясную погоду.
Заметно, что с ухудшением (со временем службы) электрических характеристик элементов питания (потери емкости аккумуляторов и снижение тока и напряжения батареек) для эффективной работы требуется пропорционально все большее приближение ПДУ к приемнику ИК-сигналов. Это первый признак необходимости замены элементов питания. Но этот диагноз успели узнать все.
Новация состоит в том, что дальность действия обычного ПДУ с одним излучающим ПК-диодом, которая обычно не превышает на открытой местности 5…6 м. (нефокусирован-ный поток), а в условиях препятствий интерьера 10… 12 м можно повысить в 1,5.. 2 раза установив последовательно со штатным, аналогичный ИК-диод. При этом включать дополнительный ПК– излучающий диод надо в прямом направлении и устанавливать рядом с первым.
Для этого потребуется аккуратно разобрать корпус ПДУ, и в зависимости от конструктивных особенностей установки базового ИК-диода (за защитным экраном-стеклом или в открытом состоянии с выдающейся рабочей поверхностью диода вне корпуса ПДУ), просверлить отверстие под место еще одного ИК-диода.
Если аналогичного ИК-излучающего диода нет в наличии, или, как часто бывает, невозможно определить в точности тип примененного в ПДУ штатного ИК-диода для пультов с напряжением питания схемы до 6В допускается включение AЛ156A, AЛ147A, AЛ164A9, AЛ164А91) зарубежные аналоги (L-315eir,L-514cir).
У перечисленных приборов прозрачный цвет колбы, прямой ток Imax. достигает значения 100 мА, длина волны 920–940 нм, мощность излучения 8… 10 мВт.
Повышать напряжение питания электронной схемы формирователя импульсов ПДУ не нужно, равно как нет необходимости и в другом вмешательстве в штатную схему. Увеличение дальности действия ПДУ проверены с моделями Setro STV-2080MH, ПДУ минисистемы МАХ-930 производства Samsung, ПДУ видеоплеера W131W.
3.3. Фонарик на элементах солнечной батареи и методы его усовершенствования
Встречаются светильники в виде камня с элементом EL44, светильники, работающие от солнечного элемента с встроенным аккумулятором. Такой «экзотический» фонарь хорошо использовать на практике для подсветки в ночное время пальмы, стоящей рядом с окном. Получается красиво.
Встречаются и другие конструкции, отличающиеся по внешнему виду, например, предназначенные для «втыкания» (вертикального крепления) непосредственно в землю на дачном участке.
Предназначение у разного вида светильников может быть различным, емкость аккумуляторов и их тип (а также мощность солнечной батареи) отличается в зависимости от конструкции, но принцип действия у всех один. При ясной погоде с большой солнечной активностью (днем) устройство, с помощью фотоэлементов солнечной батареи преобразует солнечную энергию в электрический ток, который заряжает маломощные аккумуляторы. При наступлении темноты естественная солнечная активность снижается, зарядка аккумуляторов прекращается.
Внутренняя схема «чувствует» наступление сумерек и разрешает мерцание светового элемента, которым является светодиод оранжевого свечения. Конструктивно светодиод выполнен в трубке из матовой пластмассы так, что кажется, как будто внутри корпуса фонаря мерцает свеча.
Благодаря конструктивным особенностям корпуса, удачным эстетическим решениям, а также электронной схеме устройства, управляющей светодиодом хаотичными пачками импульсов, удалось получить эффект мерцания свечи.
Прогресс в области новых световых элементов необратим.
Лет 10 назад повсеместно в продаже имелись специальные лампы (рассчитанные под патрон Е27 и напряжение осветительной сети 220 В), которые производили аналогичный эффект мерцающей свечи благодаря инертному (неоновому) газу в колбе лампы. Сегодня такой же эффект можно получить от светодиода.
Стоимость таких фонарей-светильников невелика и колеблется от 3 до 10 Евро. В России и ближнем зарубежье подобные светильники продаются в отделах электротоваров, сувениров и гипермаркетах.
Рассмотрим электрическую схему устройства и ее основные элементы.
3.3.1. Принцип работы устройства
Электрическая схема устройства представлена на рис. 3.8.
Микросхема DA1 является конструктивно «залитой» и на печатной плате представляет собой каплю твердой композиции с тремя выводами. Функция этой микросхемы– выработка импульсов с хаотичной частотой следования и скважностью.
Рис. 3.8. Электрическая схема фонаря с мерцающим светом и автоматической подзарядкой от солнечных батарей
Как только на нее поступает питания с помощью замыкания электрической цепи включателем SB1, на выводе 3 DA1 «OUT» присутствуют хаотичные импульсы положительной полярностью амплитудой 1,5–1,6 В (при нормально заряженных аккумуляторах).
Ограничительный резистор R3 ограничивает ток через светодиод HL1, чем осуществляет энергосберегающую функцию устройства в вечернее время.
Импульсы хаотичного порядка с выхода микросхемы поступают в базу транзистора VT3, на котором реализован усилитель тока.
В свою очередь, на транзисторах VT1, VT2 собран фото-чувствительный узел (фотореле), управляющее работой усилителя тока VT2 и светодиода HL1. При ясной погоде или заметной солнечной активности пасмурный день (короче, говоря, в дневное время) солнечная батарея на элементах FBI– FB4 является генератором постоянного тока. Максимальное суммарное напряжение на ее элементах (замеренное у катода диода VD1 и общего провода) не менее 3,4 В.
Это напряжение поступает в базу транзистора VT1 (включенного вместе с VT2 по схеме Дарлингтона– с максимальным коэффициентом умножения напряжения) через делитель напряжения на резисторах RI, R4. То есть, пока светло, напряжение на солнечной батарее достаточно для открывания транзистора VT1, и, соответственно, запирания VT2. Через транзистор VT3 ток не течет, светодиод не мерцает.
Аккумуляторы GBl, GB2 соединенные последовательно, когда SB1 замкнут, заряжаются небольшим током через диод VD1, вторая функция которого– не допустить разряд аккумуляторов в темное время суток через элементы солнечной батареи.
В вечернее (темное) время суток, когда естественного освещения недостаточно для зарядки аккумуляторов, фотореле на транзисторах VT1, VT2 разрешает ток через транзистор VT3 светодиод HL1 мерцает, напоминая горение свечи. В этом случае через светодиод течет ток порядка 8 мА.
При погашенном светодиоде устройство практически не потребляет ток. Соответственно, хорошо заряженных аккумуляторов при условии свечения светодиода только в вечернее время и ночью (то есть Vi суток) было бы достаточно на трое суток (примерно, 88 час).
Однако, в дневное время аккумуляторы заряжаются, поэтому на практике время работы нового фонаря увеличивается намного и зависит (в основном) от солнечной активности в дневное время, то есть тока заряда аккумуляторов.
Как правило, фонарь устанавливают в комнате на окне, с тем, чтобы он лучше заряжался днем.
На практике, устанавливать фонарь в глубину комнаты, а тем более в темные интерьеры нельзя, так как не удастся получить желаемый уровень зарядки аккумуляторов и заявленные в руководстве (инструкции по эксплуатации) возможности «бесконечной работы, так как ресурс светодиода составляет не менее 100000 часов» не соответствуют действительности.
Конечно, не из-за светодиода, а просто устройство требует постоянной солнечной энергии для подзарядки, которую в темном углу или помещении будет неоткуда взять, да и аккумуляторы имеют не бесконечный цикл заряд– разряд.
К прочим замеченным недостаткам устройства и путях их локализации – подойдем далее.
3.3.2. О деталях
Устройство комплектуется Ni-Cd аккумуляторами типа АА с номинальным напряжением 1,2 В и емкостью 700 мА/ч.
Транзисторы VT1—VT3 можно заменить на отечественные приборы типа КТ312, КТ343 с любым буквенным индексом и аналогичные.