Kniga-Online.club

Вадим Грибунин - Цифровая стеганография

Читать бесплатно Вадим Грибунин - Цифровая стеганография. Жанр: Техническая литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Сформулируем выводы из теоремы 3.3 и прокомментируем свойства скрытой ПС.

1. Теорема 3.3 определяет, что установление теоретической возможности скрытой безошибочной передачи информации и теоретической возможности противодействия этому сводится к вычислению величины скрытой ПС при известных стратегиях сторон и сравнению ее с требуемой скоростью передачи скрываемой информации. Если скрытая ПС меньше требуемой скорости, то даже теоретически не существует способа передачи скрываемых сообщений без искажений и задача атакующего по подавлению произвольных стегосистем гарантированно решается.

Оптимальная атака нарушителя заключается во внесении такого искажения , при котором величина скрытой ПС меньше требуемой скорости передачи скрываемых сообщений. Оптимальная стратегия скрывающего информацию заключается в выборе такого кодирования и такой величины искажения , при которых с учетом искажения требуемая скорость безошибочной передачи не превышает скрытой ПС. Это означает, что теоретически существует такой способ безошибочной передачи. Однако теоретическая возможность еще не означает, что скрывающий информацию способен реализовать ее на практике. Например, разработчик стегосистемы может не знать оптимальных принципов ее построения (они еще не открыты), из-за ограниченности в вычислительных ресурсах он не может себе позволить оптимальную обработку или требования к своевременности доставки скрываемых сообщений ограничивают длину N блока кодирования и так далее.

Таким образом, успех скрывающего информацию или атакующего определяется в конечном счете соотношением между скоростью передачи R и величинами искажения и контейнера, в котором скрывается информация. Рассмотренная теорема информационного скрытия при активном противодействии нарушителя очень напоминает фундаментальную теорему К. Шеннона, в которой определяется, что существует способ безошибочной передачи сообщений по каналу с помехами, если скорость передачи меньше пропускной способности канала, и невозможна достоверная передача со скоростью, большей пропускной способности. К. Шеннон также показал, что существуют зависимости между отношением мощности полезного сигнала к мощности помех в канале связи и величиной скорости безошибочной передачи сообщений по этому каналу. Аналогично этому, в информационно-скрывающем противоборстве существуют подобные зависимости между отношением величины искажения кодирования к величине искажения атакующего воздействия и величиной скорости безошибочной передачи скрываемых сообщений по стегоканалу.

Однако при внешнем сходстве у задач открытой и скрытой передачи есть существенные различия. Открытая связь осуществляется в условиях воздействия случайных помех канала связи, а передача скрываемой информации должна быть обеспечена при оптимизированном преднамеренном противодействии организованного нарушителя.

2. Рассмотрим связь задачи информационного скрытия с задачей защиты информации от перехватчика в подслушивающем канале. В 1975 году американский ученый А.Вайнер предложил метод защиты информации от чтения нарушителем, заложивший основу теории кодового зашумления [19,20]. Отправитель дискретных сообщений осуществляет их случайное избыточное кодирование на передаче и передает преобразованные сообщения получателя по основному каналу связи. Нарушитель наблюдает их в подслушивающем канале, который является отводом от основного канала. Случайное кодирование на передаче построено таким образом, что если в подслушивающем канале есть ошибки, то при декодировании они размножаются и надежно искажают защищаемую информацию. Метод кодового зашумления предназначен для систем передачи, в которых основной канал безошибочный. Например, основной канал образован на основе волоконно-оптической линии, а нарушитель пытается вести разведку по каналам побочного электромагнитного излучения и наводок, в которых в силу их природы имеется большое число ошибок. Отметим, что нарушитель знает описание системы кодового зашумления, которая не использует секретной ключевой информации (способ защиты некриптографический). Подслушивающий канал характеризуется секретной ПС, которая есть максимальная скорость безошибочной передачи по основному каналу при условии, что неопределенность для перехватчика максимальна (неопределенность защищаемых сообщений равна энтропии этих сообщений). Однако если подслушивающий канал менее шумный, чем основной канал, то секретная ПС равна нулю.

В задаче информационного скрытия атакующий способен на большее, чем обычный перехватчик в подслушивающем канале, так как он после перехвата защищаемого сообщения преднамеренно искажает основной канал. Поэтому основной канал передачи не менее шумный, чем подслушивающий канал. Следовательно, в задаче информационного скрытия с активным нарушителем секретная ПС равна нулю.

3. Выбор переменной U независимо от контейнера , как это делается в системе водяного знака согласно рис. 3.2, является в общем случае не оптимальным. Анализ выражения (3.8) показывает, что скорости безошибочной передачи в этом случае ограничены сверху величиной .

4. Пусть выполняется условие ≥. Если атакующему известно описание контейнера , то оптимальная атака состоит просто в формировании искаженного стего в виде . В этом случае выходной сигнал после атакующего не содержит никаких следов сообщения и скрытая ПС равна нулю. На практике это означает следующее. Если нарушителю известен оригинал защищаемой от пиратского копирования мультимедийной информации, то никакие стегосистемы не защитят авторские и имущественные права производителей мультимедийной продукции.

Рассмотрим потенциально сильную атаку, в которой атакующий стремится сконструировать достаточно близкую к оригиналу оценку контейнера . Если атакующий способен синтезировать искаженное стего Y такое, что , то платеж ограничен сверху величиной

(3.12)

для всех U. Следовательно, величина скрытой ПС стегоканала < .

Таким образом, если нарушитель способен сформировать достаточно точную оценку контейнера (иными словами, выполняется неравенство , где величина ε достаточно мала), то величина скрытой ПС ограничена этой малой величиной. А на практике это означает, что располагая подписанным водяным знаком стего, нарушитель может попытаться воспроизвести из него с некоторой допустимой погрешностью пустой контейнер, из которого удалено скрываемое сообщение. Такие примеры известны еще с доэлектронных времен стеганографии. Например, если перерисовать картину, заверенную художником малозаметными для визуального восприятия авторскими знаками, то хорошая копия может быть практически неотличима от оригинала (по крайней мере, для обычных зрителей), а авторские знаки, скорее всего, будут разрушены.

3.4. Двоичная стегосистема передачи скрываемых сообщений

Определим величину скрытой ПС стегосистемы, в которой алфавит скрываемых сообщений, контейнеров, ключей и стего является двоичным алфавитом . Пусть контейнер формируется источником Бернулли, то есть символы последовательности контейнера являются независимыми друг от друга и равновероятными. Функция искажения описывается расстоянием Хэмминга: , если и в ином случае. Описание контейнера является секретным ключом стегосистемы () и известно декодеру. Пусть двоичная последовательность формируется независимо и равновероятно. Стегограммы формируются в виде , где операция есть суммирование по модулю 2. Переменная Z имеет бернуллиевское распределение и отображает скрываемое сообщение M с искажением . Искажение означает, что каждый символ двоичной последовательности Z отличается от соответствующего символа двоичной последовательности M с вероятностью . Преобразование сообщения M в последовательность Z выполняется скрывающим информацию с использованием кодера с искажением. Нарушитель обрабатывает стего наложением на него двоичной шумовой последовательности , в которой единичный символ порождается с вероятностью . Получатель суммирует искаженное стего с двоичной последовательностью по модулю 2, и из полученной таким образом двоичной последовательности декодирует принятое скрываемое сообщение . Особенностью этой стегосистемы является то, что в ней скрываемое сообщение при встраивании искажается с вероятностью искажения и это искажение равно искажению кодирования стего. Такая стегосистема показана на рис. 3.3.

Перейти на страницу:

Вадим Грибунин читать все книги автора по порядку

Вадим Грибунин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Цифровая стеганография отзывы

Отзывы читателей о книге Цифровая стеганография, автор: Вадим Грибунин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*