Александр Куличков - Импульсные блоки питания для IBM PC
Вид импульсных сигналов на входах элемента DD1 представлен на диаграммах 2 и 4 (см. рис. 2.8). По времени начало формирования положительных импульсов на обеих диаграммах совпадает, но их длительность больше в последовательности, поступающей с выхода DA3. В данном случае выходной сигнал элемента DD1 будет совпадать с диаграммой 4. Последовательность, полученная на выходе DD1, является базовой для формирования конечного управляющего воздействия на силовые элементы усилителя мощности. Все временные соотношения конечного сигнала уже заложены в этой исходной последовательности. Выход DD1 соединен со счетным входом C динамического триггера – DD2, а также с одним из входов каждого из логических элементов DD5 и DD6.
Состояние выходов динамического триггера изменяется с поступлением положительного фронта импульса на его счетный вход. В этот момент состояние информационного входа, вывод D, «переписывается» (повторяется) на прямой выход триггера – вывод Q. Выход (-Q) всегда имеет состояние противоположное Q.
На функциональной схеме, представленной на рис. 2.7, показано, что динамический триггер DD2 (D-триггер) имеет соединение инверсного выхода с информационным входом – D. Такое подключение триггера устанавливает его в режим деления частоты импульсной последовательности, поступающей на счетный вход, на два. Срабатывание триггера, то есть изменение состояния его парафазных выходов, происходит только в момент поступления на вход C положительного фронта импульса. В это время каждый из его выходов меняет свое состояние на противоположное. Выводы Q и D соединены между собой, поэтому любое изменение состояния выхода Q передается на вход D. В результате каждый фронт, поступающий по входу C, переписывает на выходы измененный уровень входа D. Между приходом двух фронтов состояние выходов триггера сохраняется стабильным, что показано на диаграммах 5 и 6 (см. рис. 2.8). Диаграмма 5 соответствует состоянию прямого выхода триггера – вывод Q, а диаграмма 6 – изменению состояния инверсного выхода – вывод (-Q). Переключение триггера происходит по положительным фронтам последовательности диаграммы 4.
Процесс цифрового деления исходной частоты на два имеет важную особенность: независимо от вида (временных соотношений импульсов и пауз) входного импульсного сигнала, в последовательности, полученной в результате деления, длительности импульсов и пауз будут равны (см. диаграммы 5 и 6 на рис. 2.8).
Выход Q триггера DD2 подключен к одному из входов элемента DD3, а инверсный выход (-Q) – к одному из входов логического элемента DD4. Двухвходовые элементы DD3 и DD4 выполняют функцию логического И. Элементы этого типа формируют на выходных выводах сигналы высокого логического уровня в случае, когда все их входы имеют также высокие уровни. При любой иной комбинации логических уровней на входах элемента И выход его будет оставаться низким. Все входы логического элемента оказывают одинаковое воздействие на формирование выходного сигнала, то есть они равноправны. Если на один из входов постоянно подавать высокий логический уровень, то он окажется разрешающим и не будет воздействовать на прохождение через элемент сигнала со второго входа. Или иначе, все изменения сигнала, установленного на втором входе, будут точно повторяться на выходе.
На рис. 2.7 вывод микросхемы IC1/13 соединен с одним из входов элементов DD3 и DD4 и может быть использован для блокировки импульсных сигналов, поступающих на элементы DD3 и DD4 от выходов триггера DD2. Блокировка осуществляется подачей на этот вывод сигнала низкого логического уровня. В данной принципиальной схеме вывод IC1/13 постоянно соединен с IC1/14 – выходом источника внутреннего опорного напряжения +5 В. Этот потенциал является постоянным разрешением для прохождения последовательностей от выходов триггера на выходы DD3 и DD4. Следовательно, форма напряжения на входах и выходах элементов соответственно DD3 и DD4 будет идентична. В данном случае эти элементы выполняют функции буферных элементов и повторителей.
Последние элементы, установленные в цепи формирования ШИМ сигнала, это двухвходовые элементы DD5 и DD6. По одному входу этих элементов подключено к DD3 и DD4 соответственно, а другая пара входов элементов DD5 и DD6 объединена между собой и подключена к выходу DD1. Элементы DD5 и DD6 используются для исполнения логической функции типа ИЛИ-НЕ. Эти элементы осуществляют логическую операцию, аналогичную DD1, но добавляют еще и отрицание, которое в цифровой технике эквивалентно инвертированию. На выходе логического элемента ИЛИ-НЕ появляется сигнал низкого уровня, когда хотя бы на одном из его входов установлено напряжение высокого уровня. Если у двухвходового элемента ИЛИ (ИЛИ-НЕ) ввести некоторое абстрактное различие между входами и один рассматривать как информационный, а второй – как разрешающий, то можно сделать вывод о том, что для прохождения данных от первого входа на выход элемента на входе разрешения должен быть установлен низкий уровень напряжения. При подаче высокого уровня на вход разрешения информация блокируется, и на выходе постоянно присутствует низкий уровень. Это справедливо для логики работы элемента типа ИЛИ-НЕ.
На входе DD5 действуют сигналы, поступающие от выходов DD1 (см. диаграмму 4 на рис. 2.8) и DD3 (см. диаграмму 5). В результате логического сложения этих входных воздействий с инвертированием на выходе элемента DD5 появляется сигнал, показанный на диаграмме 7. Аналогично на диаграмме 8 представлена форма импульсов, полученных на выходе элемента DD6. Импульсы положительной полярности поступают на выходы DD5 и DD6, когда оба входных сигнала у каждого из этих элементов принимают значение низкого уровня.
Из диаграмм 4, 7 и 8 видно, что на выходах элементов DD5 и DD6 появляются чередующиеся импульсы последовательности диаграммы 4. Рабочими импульсами на диаграмме 4 будем считать временные интервалы, границы которых очерчены спадом и фронтом, то есть начало импульса – это спад положительного напряжения, а его окончание – положительный фронт. Один импульс с выхода DD1 поступает на выход элемента DD5, а входной сигнал на DD6 в этот момент блокирован высоким уровнем, поданным от инвертирующего выхода триггера DD2. Следующий импульс из последовательности на выходе DD1 появляется уже на выходе DD6, а в DD5 он блокируется высоким уровнем, поступающим от прямого выхода триггера DD2. На выходе каждого из логических элементов DD5 и DD6 поочередно появляются импульсы из последовательности, сформированной на выходе DD1.
На выходах DD5 и DD6 формируются две последовательности импульсов. Частота следования импульсов в каждой из них в два раза ниже, чем частота пилообразного напряжения на конденсаторе C11. Импульсы положительной полярности двух последовательностей разнесены во времени, то есть интервалы их действия не пересекаются. Далее каждая последовательность используется для управления своим транзистором полумостового импульсного усилителя мощности. Достаточно важным является вопрос корректного формирования импульсных последовательностей для возбуждения транзисторной схемы усилителя мощности, поэтому необходимо рассмотреть некоторые граничные случаи работы схемы источника питания и реакцию на них элементов микросхемы IC1.
Временное положение импульсов жестко определено формой пилообразного напряжения. Спады импульсов в каждой из последовательностей синхронизированы со спадами линейно нарастающего напряжения, формируемого генератором микросхемы. Временное положение спада не изменяется. Если рассмотреть диаграмму 3, то можно отметить, что положение спада импульса, формируемого ШИМ компаратором (см. диаграмму 4), зависит от текущего соотношения значений напряжения «пилы» и напряжения рассогласования. Понижение уровня напряжения рассогласования на диаграмме 4 вызывает «сдвиг» начала импульса влево. Положение фронта этого импульса, то есть его окончание, жестко определяется моментом спада пилообразного напряжения, следовательно, происходит увеличение его длительности. Частота импульсов не изменяется, а их длительность регулируется выходным уровнем усилителя рассогласования DA3.
В начале описания работы ШИМ преобразователя упоминалось о так называемом компараторе «мертвой зоны» (см. диаграммы 1 и 2). Теперь, когда стал понятен общий механизм работы всей схемы широтно-импульсного модулятора, следует пояснить необходимость его наличия в схемах подобного типа.
На элементе DD1 производится логическое сложение импульсных сигналов от компараторов DA1 и DA2. Ранее было сделано предположение, что положительный импульс компаратора DA2 имеет большую ширину, чем аналогичный выходной импульс от DA1. Однако, если начнется процесс сужения импульса от DA2, то при нулевом уровне сигнала от DA1 в предельном случае на выходе DD1 установится постоянный низкий уровень. Триггер DD2 не сможет проводить коммутацию своих выходов, а на DD5 и DD6 появятся постоянные противоположные логические уровни. При этом остановится процесс коммутации транзисторов силового каскада. Для защиты от возникновения подобной ситуации предназначен компаратор «мертвой зоны». При сужении импульса от DA2 наступает такой момент, когда длительность положительного импульса от DA1 становится определяющей при сложении сигналов, поступающих на входы DD1. Положительный импульс на выходе DD1 не может быть уже выходного импульса компаратора «мертвой зоны». Если проследить поведение цифровой части схемы в этом случае, то будет видно, что в результате преобразований на выходах DD5 и DD6 появятся последовательности положительных импульсов, длительности которых будут совпадать с паузами (логическими нулями) на диаграмме 2. Пауза же между этими импульсами будет равна длительности положительных импульсов на диаграмме 2. Это означает, что узел на компараторе «мертвой зоны» гарантированно обеспечивает появление в выходных каскадах ШИМ преобразователя последовательностей импульсов с заданными интервалами пауз между импульсами. Такой механизм действий позволяет увеличить поступление энергии во вторичную цепь и возобновить процесс ШИМ регулирования с помощью усилителя DA3 и компаратора DA2. Пауза, образованная за счет наличия источника 100 мВ на входе DA1, позволяет исключить появление сквозных токов в силовых транзисторах усилителя мощности.