Зигмунд Перля - О станках и калибрах
Но вскоре станкостроители переконструировали станки. Теперь их строили так, чтобы двигатель и станок, поставленные на общей станине, составляли одно целое. На таком станке вал двигателя уже где-то внутри всей машины вращал систему шестерен и промежуточных валов и через них приводил в движение главный рабочий орган — шпиндель станка. Отпала нужда в индивидуальной трансмиссии, или контрприводе. Наконец-то мотор вплотную приблизился к станку, стал частью машины. Лес ремней исчез.
Второе «путешествие» двигателя
Вместе с лесом ремней ушли из цехов темнота, грязь, опасность увечий. Цехи машиностроительных заводов стали просторными, светлыми, чистыми, и неровный резкий гул ременной передачи сменился однообразным шумом работающих двигателей. Но и на этом путешествие двигателя не закончилось.
Путь энергии к рабочему органу — шпинделю станка — стал значительно короче. Однако и здесь значительная часть энергии расходовалась на преодоление трения между соприкасающимися звеньями передачи: многочисленными шестернями, валами, маховичками. Этих звеньев было очень много. Энергию приходилось расходовать не только на вращение рабочего шпинделя, но и на другие движущиеся части станка. Так, например, в большом радиально-сверлильном станке, кроме сверла, приходилось передвигать тяжелую поперечину (подвижную часть станка, несущую сверлильную головку), приводить в действие масляный насос, обслуживать промежуточные передачи.
За всеми этими операциями, требовавшими внимания, времени, усилий, следил рабочий. Передаточные механизмы {46} также поглощали часть энергии, отдаваемой двигателем.
Сделать путь энергии короче, уменьшить цепь передаточных звеньев и этим сократить потери энергии и улучшить работу станка — вот какие задачи встали перед станкостроителями. И тогда началось второе путешествие электродвигателя, но теперь уж не к станку, а по станку. Это значит, что двигатель стали пристраивать все ближе и ближе к рабочим органам станка.
Станкостроители сделали еще один шаг вперед: в конструкции сложных станков ввели не един, а несколько небольших электродвигателей. Один из них обслуживал рабочий шпиндель станка, а другие — отдельные его механизмы.
В том же радиально-сверлильном станке единый двигатель, дошедший было уже до самого шпинделя, «размножился» на четыре электродвигателя: один из них примостился непосредственно на рабочем шпинделе и вращал сверло, другой — у основания колонны станка приводил в движение насос для подачи жидкости, охлаждающей инструмент; третий — на верхушке колонны передвигал траверсу вверх и вниз, и, наконец, четвертый, под траверсой, закреплял ее в определенном положении и освобождал, когда нужно было ее передвинуть. В наши дни существуют {47} станки, у которых число двигателей доходит до десяти. Каждый из них приводит в движение определенную работающую часть станка.
Еще до Великой Отечественной войны в Ленинграде был спроектирован огромный станок для обработки поверхностей вращающейся сцены Дворца Советов. В этом станке число электродвигателей дошло до 32, а их общая мощность достигла 1500 киловатт. Такой мощности было бы достаточно для электроцентрали небольшого города.
С помощью электрических двигателей станкостроители стали осуществлять свои, даже самые смелые, казалось бы, невыполнимые замыслы.
Электрический помощник
Электричество — подручный станочника, его помощник. Оно экономит время, освобождает руки рабочего, ускоряет темп работы, делает ее более точной.
Пуск станка в ход, его остановка, изменение скорости — все, что еще не так давно требовало ручного труда, времени и опыта, в наши дни заменено легким нажимом пусковых кнопок на щите управления станком. Электрический ток не только приводит в движение рабочие органы станка, он выполняет много других вспомогательных работ. Поэтому современный станок как бы оброс электроприборами.
Одни из них точным движением стрелок по шкале измеряют нагрузку станка, так как перегрузка грозит поломкой и выходом станка из строя.
Другие аккуратно «докладывают», с какой скоростью вращается обрабатываемая деталь, и «стерегут» любое отклонение от заданной скорости.
Существуют и такие электроизмерительные приборы, которые во время самой точной обработки, когда изменения размеров выражаются тысячными долями миллиметра, зорко и неустанно «следят» за этими изменениями. Как только инструмент — пусть это будет даже быстро вращающийся круг шлифовального станка — снимет последнюю, чуть ли не микроскопическую стружку, рабочий получит сигнал: стоп, отведи инструмент от детали!
На столе плоско-шлифовального станка выстроились одинаковые детали. Их поверхности нужно отшлифовать, {48} сделать предельно гладкими и точными. Для этого детали следует надежно закрепить, чтоб они не сдвинулись ни на одну тысячную миллиметра. Операцию эту можно выполнить вручную, поручив ее рабочему высокой квалификации. Но человеческие руки, даже самые искусные, все же могут ошибиться, допустить неточность. И тут опять приходит на помощь электричество. Новейшие шлифовальные станки оборудованы для крепления деталей особыми плитами, собранными из электромагнитов. Рабочий включает ток и замыкает магнитное поле через обрабатываемые детали. Один миг — и детали «прилипают» к столу станка и находятся в таком положении, пока рука рабочего не разомкнет ток.
И еще много других электроприборов «помогают» станку, измеряют и контролируют его работу, считают и записывают ее, сигнализируют о неисправностях и, наконец, всячески автоматизируют рабочие движения исполнительных органов машины.
Электрический привод и электрическое обслуживание всех вспомогательных операций — это тот фундамент, на котором современные станкостроители создали и создают новейшие станки. Какие же это станки?
«Мир» станков
До сих пор мы насчитывали всего лишь пять основных разновидностей станков: токарный, строгальный, фрезерный, сверлильный и шлифовальный.
В давние, начальные, времена своего существования каждый из основных станков, к примеру токарный или фрезерный, был чем-то вроде «мастера на все руки». На токарном станке научились обрабатывать цилиндрические детали не только снаружи, но и внутри. На этом же станке нарезали резьбу и обрабатывали небольшие плоские торцы деталей. Кое-какие из этих операций не всегда удавалось достаточно хорошо и быстро выполнить. Обыкновенный токарный станок был для этого мало приспособлен. Такими же недостатками страдали и другие основные виды станков. Тогда появились станки-специалисты, выполнявшие определенную операцию. От каждого основного вида станка, точно ветви от ствола дерева, выросли и развились новые, родственные виды станков.
От токарного отпочковался станок для растачивания длинных цилиндрических и полых изделий — орудийных {49}
Современный советский токарно-винторезный станок: 1 — коробка скоростей, передняя бабка; 2 — коробка подач; 3 — каретка сулорта; 4 — супорт; 5 — резцедержатель; 6 — задняя бабка; 7 — сменный центр задней бабки, вставленный в пиноль; 8 — рукоятки перемещения пиноли; 9 — трубопровод для подачи охлаждающей жидкости; 10 — ходовой винт для нарезания резьб; 11 — ходовой валик для самохода; 12 — валик пуска; 13 — рукоятки установки числа оборотов шпинделя; 14 — рукоятка изменения шага нарезаемой резьбы; 15 — рукоятка изменения направления витков нарезаемой резьбы (правой и левой); 16 — рукоятки настройки подачи резца (по таблице на коробке подач); 17 — рукоятка включения ходового винта или валика; 18 — кнопочная станция — включение и выключение электродвигателя; 19 — рукоятка ручного хода супорта; 20 — рукоятка механической подачи; 21 — включение и выключение гайки ходового винта; 22 — поперечная подача супорта; 23 — продольная подача супорта
{50}
стволов и гребных валов. Затем появился станок-специалист по точной расточке внутренних поверхностей коротких блок цилиндров двигателя. Этот станок называется горизонтально-расточным. В конструкцию этого станка введен стол, на котором крепится изделие. Почти одновременно родился и лобовой токарный станок для обработки больших плоскостей. Если же изделия с этими плоскостями слишком велики, тяжелы и громоздки, то на помощь приходит карусельный токарный станок, действительно, напоминающий карусель. Круглый стол станка расположен горизонтально и вращается так же, как и патрон или планшайба токарного станка. Изделие крепится на столе, а резцы подводятся супортом сверху или {51} сбоку. Также много ответвлений и у других основных станков.
Современный советский универсально-фрезерный станок: 1 — механизм подачи стола; 2 — коробка скоростей; 3 — кожух „хобота” станка; 4 — шпиндель; 5 — стол; 6 и 7 — механизм поперечной подачи стола; 8 — винт подъема стола; 9 — фундаментная плита; 10 — рычаг остановки стола; 11 — механизм продольного перемещения стола