Kniga-Online.club

Юрий Ревич - Занимательная электроника

Читать бесплатно Юрий Ревич - Занимательная электроника. Жанр: Радиотехника издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Несомненно, истинным подарком для фирмы Atmel стала позиция итальянских инженеров, выбравших в 2004 году AVR для любительской платформы Arduino, отчего популярность этого семейства быстро выросла, и за его будущее можно не беспокоиться. Об Arduino мы будем подробно говорить в последних главах этой книги.

Classic, Mega и Tiny

Линейка универсальных контроллеров AVR общего назначения делится на семейства: Classic, Mega и Tiny (есть и новейшее семейство Xmega, содержащее весьма «навороченные» кристаллы). МК семейства Classic (они именовались, как АТ908<марка контроллера>) ныне уже не производятся, однако все еще распространены в литературе, т. к. для них наработано значительное количество программ. Чтобы пользователям не пришлось переписывать все ПО, фирма Atmel позаботилась о преемственности — большинство МК семейства Classic имеет функциональные аналоги в семействе Mega, например, AT90S8515 — ATmega8515, AT90S8535 — ATmega8535 и т. п. (только AT90S2313 имеет аналог в семействе Tiny — ATtiny2313).

Полная совместимость обеспечивается специальным установочным битом (из набора так называемых Fuse-битoв), при программировании которого Mega-контроллер начинает функционировать, как Classic (подробнее об этом рассказано в главе 19). Для вновь разрабатываемых устройств обычно нет никакого смысла в использовании их в режиме совместимости, однако такой прием в ряде случаев может оказаться полезным для начинающих, поскольку программы для МК Classic устроены проще и часто встречаются в литературе.

Семейство Tiny (что в буквальном переводе означает «крохотный») предназначено для наиболее простых устройств. Часть МК этого семейства не имеет возможности программирования по последовательному интерфейсу, и потому мы их, за исключением ATtiny2313, не будем рассматривать в этой книге (это не значит, что остальных Tiny следует избегать — среди них есть очень удобные и функциональные микросхемы, нередко вообще не имеющие аналогов). У составляющего исключение МК ATtiny2313 отсутствует бит совместимости с «классическим» аналогом AT90S2313, одним из самых простых и удобных контроллеров Atmel, но при внимательном рассмотрении оказывается, что они и без такого бита совместимы «снизу вверх», — программы для «классического» 2313 практически полностью подходят и для Tiny2313 (см. главу 19).

Структура МК AVR

Общая структура внутреннего устройства МК AVR приведена на рис. 18.9. Здесь показаны все основные компоненты AVR (за исключением некоторых специализированных) — в отдельных моделях некоторые компоненты могут отсутствовать или различаться по характеристикам, неизменным остается только общее 8-разрядное процессорное ядро (GPU, General Processing Unit). Кратко рассмотрим наиболее важные компоненты, с большинством из которых мы познакомимся в дальнейшем подробнее.

Рис. 18.9. Общая структурная схема микроконтроллеров AVR

Начнем с памяти. В структуре AVR имеются три разновидности памяти: flash-память программ, ОЗУ (SRAM) для временного хранения данных и энергонезависимая память (EEPROM) для долговременного хранения констант и данных. Рассмотрим их по отдельности.

Память программ

Встроенная flash-память программ в AVR-контроллерах имеет объем от 1 Кбайт у ATtiny11 до 256 Кбайт у ATmega2560. Первое число в наименовании модели содержит величину этой памяти в килобайтах из ряда: 1, 2, 4, 8, 16, 32, 64, 128 и 256 Кбайт. Так, ATtiny2313 имеет 2 Кбайт памяти, a ATmega8535 — 8 Кбайт.

С точки зрения программиста память программ можно считать построенной из отдельных ячеек — слов по два байта каждое. Устройство памяти программ (и только этой памяти!) по двухбайтовым словам — очень важный момент, который ассемблерному программисту нужно твердо усвоить. Такая организация обусловлена тем, что любая команда в AVR имеет длину ровно 2 байта. Исключение составляют команды jmp, call и некоторые другие (например, lds), которые оперируют с адресами 16-разрядной и более длины. Длина этих команд составляет 4 байта, и они используются лишь в моделях с памятью программ более 8 Кбайт, поэтому в этом разделе книги вы их не встретите. Arduino основано на AVR-контроллерах с большим объемом памяти, но там нам об этих тонкостях знать необязательно. Во всех остальных случаях счетчик команд сдвигается при выполнении очередной команды на 2 байта (одно слово), поэтому необходимую емкость памяти легко подсчитать, зная просто число используемых команд.

По умолчанию все контроллеры AVR всегда начинают выполнение программы с адреса $0000[29]. Если в программе не используются прерывания, то с этого адреса может начинаться прикладная программа, как мы увидим далее. В противном случае по этому адресу располагается так называемая таблица векторов прерываний, подробнее о которой мы будем говорить в главе 19.

Память данных (ОЗУ, SRAM)

В отличие от памяти программ, адресное пространство памяти данных адресуется побайтно (а не пословно). Адресация полностью линейная, без какого-либо деления на страницы, сегменты или банки, как это принято в некоторых других системах.

Исключая некоторые младшие модели Tiny, объем встроенной SRAM колеблется от 128 байтов (например, у ATtiny2313) до 4–8 Кбайт у старших моделей Mega. Адресное пространство статической памяти данных (SRAM) условно делится на несколько областей, показанных на рис. 18.10. К собственно встроенной SRAM относится лишь затемненная часть, до нее по порядку адресов расположено адресное пространство регистров, где первые 32 байта занимает массив регистров общего назначения (РОН), еще 64 — регистров ввода/вывода (РВВ).

Рис. 18.10. Адресное пространство статической памяти данных (SRAM) микроконтроллеров AVR

Для некоторых моделей Mega (ATmega8515, ATmega162, ATmega128, ATmega2560 и др.) предусмотрена возможность подключения внешней памяти объемом до 64 Кбайт. Отметим, что адресные пространства РОН и РВВ не отнимают пространство у ОЗУ данных — так, если в конкретной модели МК имеется 512 байтов SRAM, а пространство регистров занимает первые 96 байтов (до адреса $5f), to адреса SRAM займут адресное пространство от $0060 до $025F (т. е. от 96 до 607 ячейки включительно). Конец встроенной памяти данных обозначается константой RAMEND. Следует учесть, что последние адреса SRAM, как минимум, на четыре-шесть ячеек от конца (в зависимости от количества вложенных вызовов процедур — для надежности лучше принять это число равным десяти или даже более) занимать данными не следует, т. к. они при использовании подпрограмм и прерываний заняты под стек.

Операции чтения/записи в память одинаково работают с любыми адресами из доступного пространства, и потому при работе с SRAM нужно быть внимательным, — вместо записи в память вы легко можете «попасть» в какой-нибудь регистр. Для обращения к РОН, как к ячейкам памяти, можно в качестве адреса подставлять номер регистра, а вот при обращении к РВВ таким же способом к номеру последнего нужно прибавлять $20. Следует также помнить, что по умолчанию при включении питания все РВВ устанавливаются в нулевое состояние во всех битах (единичные исключения все же имеются, поэтому в критичных случаях надо смотреть документацию), а вот РОН и ячейки SRAM могут принимать произвольные значения.

Энергонезависимая память данных (EEPROM)

Все модели МК AVR (кроме снятого с производства ATtiny11) имеют встроенную EEPROM для хранения констант и данных при отключении питания. В разных моделях объем ее варьируется от 64 байтов (ATtinylx) до 4 Кбайт (старшие модели Mega). Число циклов перепрограммирования EEPROM может достигать 100 тыс.

Напомним, что EEPROM отличается от flash-памяти возможностью выборочного программирования побайтно (вообще-то, даже побитно, но эта возможность скрыта от пользователя). Чтение из EEPROM осуществляется с такой же скоростью, как и чтение из РОН, — в течение одного машинного цикла (правда, на практике оно растягивается на 4 цикла, но программисту следить за этим специально не требуется). А вот запись в EEPROM протекает значительно медленнее и к тому же с неопределенной скоростью — цикл записи одного байта может занимать от 2 до 4 и более миллисекунд. Процесс записи регулируется встроенным RC-генератором, частота которого нестабильна (при низком напряжении питания можно ожидать, что время записи будет больше). За такое время при обычных тактовых частотах МК успевает выполнить несколько тысяч команд, поэтому программирование процедуры записи требует аккуратности — например, нужно следить, чтобы в момент записи не «вклинилось» прерывание (подробнее об этом далее).

Перейти на страницу:

Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Занимательная электроника отзывы

Отзывы читателей о книге Занимательная электроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*