Капра Фритьоф - Паутина жизни. Новое научное понимание живых систем
Особенно интересна клеточная мембрана. Это граница клетки, образованная некоторыми компонентами клетки; она охватывает всю сеть метаболических процессов и тем самым ограничивает их распространение. Вместе с тем мембрана участвует в этой же сети: с помощью специальных фильтров она отбирает сырье для процессов производства (пищу клетки), а отходы производства выводит во внешнюю среду. Таким образом, автопоэзная сеть создает свою собственную границу, которая определяет клетку как отчетливую систему и в то же время сама остается активной частью сети.
Поскольку каждый компонент автопоэзной сети производится другими компонентами этой же сети, вся система организационно закрыта; вместе с тем она открыта по отношению к потоку энергии и материи. Организационная закрытость означает, что живая система является самоорганизующейся в том смысле, что ее порядок и поведение не обусловлены окружением, но устанавливаются самой системой. Другими словами, живые системы автономны. Это не означает, что они изолированы от окружающей их среды. Наоборот, они взаимодействуют с окружением через непрерывный обмен энергией и материей. Но это взаимодействие не определяет их организацию — они остаются самоорганизующимися. Таким образом, автопоэз можно рассматривать как паттерн, лежащий в основе феномена самоорганизации, или автономии; это — важное характерное свойство всех живых систем.
Через взаимодействие с окружающей средой живые организмы непрерывно поддерживают и обновляют себя; они используют для этого ресурсы из окружающей среды. Более того, постоянное самосоздание включает также способность формировать новые структуры и новые паттерны поведения. Мы увидим, что создание новизны, приводящее к развитию и эволюции, является глубоким внутренним аспектом автопоэза.
Тонкий, но важный момент в определении автопоэза составляет тот факт, что автопоэзная сеть — это не набор отношений между статическими компонентами (каковым, например, является паттерн организации кристалла), но набор отношений между процессами воспроизводства компонентов. Если эти процессы останавливаются, останавливается и вся организация. Другими словами, автопоэзные сети должны непрерывно регенерировать себя, чтобы поддерживать собственную организацию. Это, конечно, хорошо известная особенность жизни.
Матурана и Варела видят в различии между взаимоотношениями статических компонентов и взаимоотношениями процессов ключевую разницу между физическими и биологическими феноменами. Поскольку процессы в биологическом феномене включают компоненты, из них всегда можно извлечь описание этих компонентов в чисто физических терминах. Тем не менее, как утверждают авторы, такое чисто физическое описание не охватывает биологический феномен в полной мере. Биологическое объяснение, утверждают они, должно быть описанием взаимоотношений процессов в контексте автопоэза.
Диссипативная структура — структура живых систем
Описывая паттерн жизни как автопоэзную сеть, Матурана и Варела делают основной акцент на организационной закрытости этого паттерна. Когда структуру живой системы описывает Илья Пригожин, он, наоборот, уделяет главное внимание открытости этой структуры потоку энергии и материи. Таким образом, живая система как открыта, так и закрыта — она открыта структурно, но закрыта организационно. Через систему непрерывно протекает поток материи, но она поддерживает устойчивую форму и обеспечивает это автономно посредством самоорганизации.
Чтобы подчеркнуть это кажущееся парадоксальным сосуществование изменений и устойчивости, Пригожин ввел термин «диссипативные структуры». Я уже упоминал, что не все диссипативные структуры являются живыми системами, и, чтобы наглядно показать сосуществование непрерывного потока и структурной устойчивости, удобнее обратиться к простым, неживым диссипативным структурам. Одна из простейших структур такого типа — завихрение в потоке воды, например, водоворот в сливном отверстии ванны. Вода непрерывно проходит сквозь водоворот, и все же его характерная форма, хорошо известные спирали и сужающаяся воронка остаются замечательно устойчивыми (рис. 7–4). Это — диссипативная структура.
Более близкое рассмотрение источника и прохождения такого водоворота вскрывает ряд достаточно сложных феноменов". Представьте себе ванну с неглубокой и неподвижной водой. Когда сток открывается, вода начинает вытекать, образуя радиальный поток в направлении стока и ускоряясь под влиянием гравитационной силы по мере приближения к сливному отверстию. Таким образом, устанавливается плавный, единый поток. Однако плавное состояние потока удерживается недолго.
Рис. 7–4 Воронка при сливе воды в ванной
Мелкие нерегулярности в движении воды, движении воздуха над поверхностью воды и возмущения в трубе стока приведут к тому, что с одной стороны стока окажется немного больше воды, чем с другой, и тогда в потоке появляется вихревой, круговой компонент движения. По мере того как частицы воды движутся вниз в направлении стока, их радиальная и круговая скорости нарастают. Радиально они ускоряются под действием силы гравитации, а скорость вращения возрастает оттого, что уменьшается радиус вращения: так фигуристка ускоряет обороты, прижимая руки к телу при выполнении пируэта12. В результате частицы воды движутся вниз по спиральным траекториям, образуя сужающуюся трубку линий потока, известную как воронка.
Так как основной поток все еще радиален и направлен к центру, воронка непрерывно сдавливается под напором воды со всех сторон. Это давление уменьшает ее радиус и еще больше ускоряет вращение. Используя язык Пригожина, можно сказать, что вращение вносит неустойчивость в изначально однородный поток. Сила тяготения, давление воды и постоянно уменьшающийся радиус воронки — все это, вместе взятое, непрерывно ускоряет вихревое движение жидкости.
Это беспрерывное ускорение завершается, однако, не катастрофой, а новым устойчивым состоянием. По достижении определенной скорости вращения в игру вступают центробежные силы: они отталкивают воду от стока по радиусу. Как результат, на изначально плоской поверхности воды над стоком образуется углубление, которое быстро превращается в воронку. В конце концов внутри водоворота формируется миниатюрный воздушный торнадо, а на водной поверхности воронки возникают достаточно сложные нелинейные структуры — барашки, волны и завихрения.
Через некоторое время сила тяготения, влекущая воду вниз в направлении стока, давление воды, направленное внутрь потока, и центробежные силы, расталкивающие поток в стороны, уравновешивают друг друга; устанавливается устойчивое состояние, в котором тяготение поддерживает поток энергии высокого уровня, а трение рассеивает некоторую небольшую ее часть. Действующие силы теперь взаимосвязаны через самобалансирующиеся петли обратной связи, которые обеспечивают устойчивость структуре водоворота в целом.
Подобные высокоустойчивые диссипативные структуры образуются иногда во время грозы при особых атмосферных условиях. Ураганы и торнадо представляют собой вихри бешено вращающегося воздуха; они могут перемещаться на огромные расстояния и высвобождать разрушительные силы, не проявляя значительных изменений в структуре своего вихря. Подробности процессов в этих атмосферных вихрях гораздо богаче, чем в случае воронки воды в ванной, поскольку здесь появляется несколько новых факторов — разница температур, расширение и сжатие воздуха, эффекты влажности, конденсация и испарение и т. п. Соответственно, гораздо более сложными и разнообразными, чем в водоворотах, оказываются структуры воздушных вихрей и режимы их поведения. Грозы могут превращаться в диссипативные структуры характерных размеров и форм; при особых условиях некоторые из них даже разделяются на два отдельных урагана.
Метафорически мы можем представить себе и живую клетку как некий вихрь, т. е. устойчивую структуру, которую постоянно пронизывает поток материи и энергии. Но силы и процессы, действующие в клетке, совершенно другие и гораздо более сложные, чем в вихре. Если балансирующие силы в вихре имеют механический характер, причем доминирует сила тяготения, то соответствующие силы в клетке — химической природы. Точнее говоря, именно каталитические петли в автопоэзной сети клетки действуют как самобалансирующиеся петли обратной связи.
Подобным же образом, источник неустойчивости в водовороте носит механический характер и возникает как следствие начального вращательного импульса, а в клетке существуют различные типы неустойчивости, и их природа — химическая, а не механическая. Они тоже берут начало в каталитических циклах, составляющих главную особенность всякого метаболического процесса. Важнейшим свойством этих циклов является то, что они действуют не только как самобалансирующие, но и как самоусиливающие петли обратной связи, способные толкать систему все дальше и дальше от равновесия, пока она не достигнет порога устойчивости. Этот порог называется тонкой бифуркации, или точкой неустойчивости; в таких точках могут спонтанно возникать новые формы порядка, полагая начало развитию и эволюции.