Kniga-Online.club

Пиаже Жан - Психология интеллекта

Читать бесплатно Пиаже Жан - Психология интеллекта. Жанр: Психология издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Более того, одновременное построение группировок включения в классы и количественной сериации ведет к появлению системы чисел. Нет сомнения, что маленький ребенок не дожидается этого операционального обобщения для построения первых чисел (согласно А. Деккедр, между одним и шестью годами он каждый год вырабатывает по новому числу); но числа от 1 до 6 для него еще интуитивны, ибо они связаны с перцептивными конфигурациями. С другой стороны, можно научить ребенка считать, но опыт показал, что вербальное употребление названий чисел остается не связанным с самими операциями счета; иногда эти операции предшествуют устному счету, иногда идут вслед за ним, во всех случаях не подчиняясь необходимой связи. Что касается операций, образующих число, т. е. взаимно-однозначного соответствия (с сохранением, несмотря на трансформации фигур, достигнутой эквивалентности), или простой итерации единицы («1 + 2 = 3», «2 + 1 = 3» и т. д.), то эти операции не требуют ничего, кроме аддитивных группировок включения в классы и сериации асимметричных отношений (упорядочивание). Эти группировки, однако, должны быть слиты в одно операциональное целое, так что единица является одновременно элементом и класса (1 включено в 2; 2 включено в 3 и т. д.), и ряда (первая единица перед второй единицей и т. д.). Действительно, пока субъект имеет дело с индивидуальными элементами в их качественном различии, он может или объединять их на основе эквивалентных свойств (тогда он конструирует классы), или располагать их в порядке по их различиям (тогда он конструирует асимметричные отношения), но он не может группировать их одновременно и как эквивалентные, и как различные. Число же, напротив, является набором объектов, воспринимаемых одновременно и в качестве эквивалентных, и в качестве отдающихся сериации, поскольку единственное различие между ними будет тогда сводиться к их порядковому положению. Объединение различия и эквивалентности, осуществляемое в этом случае, предполагает отвлечение от свойств, а именно благодаря этому происходит образование однородного единства «1» и переход от логического к математическому. В высшей степени интересно, что этот переход генетически совершается в то же самый момент, что и построение логических операций; это означает, что классы, отношения и числа образуют единое целое, психологически и логически нерасчленимое, где каждый из трех членов дополняет два других.

Рассмотренные логико-арифметические операции образуют лишь один аспект основных группировок, построение которых характерно для возраста примерно 7—8 лет. В самом деле, этим операциям, объединяющим объекты для классификации, сериации или счета, соответствуют конститутивные операции самих объектов — объектов полных и вместе с тем единственных, таких, как пространство, время и материальные системы. Нет ничего удивительного, что эти инфралогические или пространственно-временные операции группируются в соответствии с логико-математическими операциями: ведь это те же самые операции, но отнесенные к другому масштабу. Включение объектов в классы и классов друг в друга становится здесь включением частей или «кусков» в целое; сериация, выражающая различия между объектами, предстает в форме отношений порядка (операции размещения) и перемещения, а числу здесь соответствует мера.

Итак, мы видим, как действительно одновременно с формированием понятий классов, отношений и чисел конструируются — и притом удивительно параллельно — исходные качественные группировки времени и пространства. Именно к 8 годам отношения временного порядка («до» и «после») координируются с продолжительностью («более» или «менее долго»), тогда как в интуитивном плане эти две системы понятий остались независимыми. И едва объединившись в единое целое, они порождают понятие общего времени для различных движений на разных скоростях (как внешних, так и внутренних). Особенно важно, что именно к 7—8 годам образуются качественные операции, структурирующие пространство: порядок пространственной преемственности и включение интервалов или расстояний, сохранение длины, поверхностей и т. п.; выработка системы координат; перспективы и сечения и т. д. В этом отношении изучение спонтанной меры, которая начало от первых оценок (вырабатываемых путем перцептивных «переносов») и завершается к 7—8 годам транзитивностью операциональных соответствий (А = В, В = С, следовательно, А = С) и выработкой единства (путем синтеза разделения и перемещения), предельно ясно показывает, каким образом непрерывное развитие сначала перцептивных, а затем интуитивных приобретений завершается конечными обратимыми операциями как своей необходимой формой равновесия.

Важно отметить, что эти различные группировки, как логико-математические, так и пространственно-временные, еще далеки от того, чтобы образовать формальную логику, применимую к любым понятиям и к любым умозаключениям. Именно здесь заключается существенный момент, выявление которого необходимо как для теории интеллекта, так и для педагогики, если мы хотим, в противоположность логицизму школьной традиции, согласовывать обучение с результатами психологии развития.

Действительно, те же самые дети, которые уже достигли только что описанных операций, обычно становятся неспособными к ним, как только они прекращают манипулировать объектами и оказываются вынужденными строить рассуждение при помощи одних лишь вербальных предложений. Следовательно, операции, о которых здесь идет речь, являются «конкретными операциями», но еще не формальными: всегда связанные с действием, они логически структурируют это действие вместе с сопровождающими его словами, но они совершенно не заключают в себе возможности строить логическую речь независимо от действия. Так, например, классификацию в конкретном примере с бусинками ребенок понимает, начиная с 7—8 лет (см. выше), тогда как задачу того же типа, но выраженную в вербальном тексте, он сможет решить лишь значительно позднее (ср. с одним из тестов Бурта: «Некоторые цветы в моем букете желтые», — говорит мальчик своим сестрам. Первая отвечает: «Тогда все цветы желтые»; «Часть желтых», — отвечает вторая, а третья говорит: «Никакие». Кто из сестер прав?»).

И даже более того. У одного и того же ребенка одни и те же «конкретные» умозаключения, ведущие к идее сохранения целого, к транзитивности равенств (А = В = С) или различий (А < В < С…), могут оказаться легко доступными в какой-то одной определенной системе понятий (такой, например, как количество материи) и лишенными какого бы то ни было смысла в другой системе понятий (например, такой, как вес). С этой точки зрения представляется особенно неправомерным говорить об овладении формальной логикой до конца периода детства, пока «группировки» относятся только к определенным типам конкретных понятий (т. е. осмысленных действий), которые они действительно структурируют. Но структурирование других типов конкретных понятий, интуитивная природа которых более сложна, поскольку они опираются еще и на другие действия, требует такой перестройки этих «группировок», которая допускала бы смещение действий во времени.

Это становится особенно ясным из следующего примера, связанного с понятиями сохранения целого (которые являются показателями самой «группировки»). Предъявляя испытуемому два сделанных из пластилина шарика, одинаковых по форме, размеру и весу, и видоизменяя затем один из них (в валик и т. п.), спрашиваем, сохранилась ли материя (то же самое количество пластилина), вес и объем (одинаково ли поднимается вода в двух стаканах, куда мы погружаем объекты). Начиная с 7—8 лет дети признают обязательность сохранения количества материи, опираясь при этом на рассуждения, о которых мы говорили в связи с сохранением совокупностей. Но вплоть до 9—10 лет эти же дети возражают против сохранения веса и при этом опираются на те самые интуитивные рассуждения, посредством которых они до 7—8 лет мотивировали несохранение материи. Что же касается рассуждении, только что (иногда несколько мгновений тому назад) проделанных этими же детьми для доказательства сохранения материи, то они оказываются совершенно не связанными с рассуждениями по поводу веса. Ход их мысли таков: если валик стал более тонким, чем шарик, то материя сохраняется потому, что уменьшение толщины компенсируется удлинением, но вес при это уменьшается, потому что в этом отношении действие уменьшения толщины абсолютно! К 9—10 годам положение меняется: ребенок принимает сохранение веса, причем делает это из тех же соображений, из которых он раньше принимал сохранение материи, однако вплоть до 11—12 лет он продолжает отрицать сохранение объема, опираясь на противоположные интуитивные рассуждения! Точно в таком же порядке происходит развитие сериации, составления равенств и т.д.: в 8 лет два количества материи, равные третьему, признаются равными между собой, но такое рассуждение переносится на два веса (не говоря уже о восприятии объема!), и т. д. Понятно, что причины такого рода смешений следует искать в интуитивном характере представлений о свойствах материи, веса и объема, который или облегчает, или, наоборот, затрудняет становление операциональных композиций. Таким образом, до 11—12 лет одна и та же логическая форма еще не является независимой от разных проявлений своего конкретного содержания.

Перейти на страницу:

Пиаже Жан читать все книги автора по порядку

Пиаже Жан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Психология интеллекта отзывы

Отзывы читателей о книге Психология интеллекта, автор: Пиаже Жан. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*