Скотт Плаус - Психология оценки и принятия решений
Это звучит как вполне резонное правило, но взгляните, что выйдет, если следовать ему. Если сравнить помощника А и помощника Б, нужно выбрать второго, так как их IQ не отличается больше, чем на 10 пунктов, а Б более опытен, чем А. Также, сравнивая Б и В, нужно выбрать В, так как разница их IQ не больше 10, но В более опытен. Если сравнить В и А, то надо выбрать А, так как его IQ более чем на 10 пунктов выше, чем IQ В. Итак, помощник Б лучше помощника А, В — лучше Б, а А — лучше В. Таким образом, появляется нетранзитивность, поскольку правило выбора основано на двух разных параметрах — уме и опыте — различающихся очень слабо и обратно пропорциональных.
Действительно ли люди опровергают принцип нетранзитивности? В 1969 году Амос Тверски опубликовал исследование, одна треть участников которого поступала нетранзитивно. Тверски начал эксперимент с того, что ознакомил 18 Гарвардских дипломников с пятью лотереями, представленными на рис. 8.4. Как вы можете видеть, ожидаемая ценность каждой лотереи повышается шансом на выигрыш и понижается его размером. Студентам наугад показывали пары лотерей и просили сказать, какую бы они предпочли. После того как они сделали три вы-
119
РИСУНОК 8.4
Следующие азартные игры были использованы в 1969 году в эксперименте Амоса Тверски. Ожидаемая ценность (ОЦ) каждой игры вычислена путем умножения суммы выигрыша на вероятность победы.
Игра
Вероятность победы
Стоимость ($)
ОЦ (*
А
7/24
5,00
1,46
Б
8/24
4,75
1,58
В
9/24
4,50
1,69
Г
10/24
4,25
1,77
Д
11/24
4,00
1,83
бора из 10 возможных пар (А и Б, А и В и т.д.),Тверски выбрал 8 испытуемых, показавших тенденцию к нетранзитивности, и попросил их приходить к нему в лабораторию раз в неделю для интенсивного пятинедельного эксперимента.
Он обнаружил, что шесть студентов демонстрировали нетранзитивность с постоянством, заслуживающим лучшего применения. Из двух альтернатив, где вероятность выигрыша различалась мало (например, в паре А и Б), они выбирали ту лотерею, где выигрыш был больше. И наоборот, когда разница была максимальной (например, в паре А и Д), испытуемые выбирали ту лотерею, где вероятность выигрыша была выше. Итак, лотерею А они предпочитали лотерее Б, лотерею Б — лотерее В, лотерею В — лотерее Г, лотерею Г — лотерее Д, а лотерею Д — лотерее А. Тверски обнаружил непереходность в примере с помощниками.
Нетранзитивность — это нечто большее, чем просто экспериментальный курьез; она может иметь важное влияние на принимающих решение. Например, «проблема комитета». В ее типичной версии существует совет факультета, состоящий из пяти человек: Энн, Боба, Синди, Дэна и Эллен. Их задача — выборы нового профессора и оценки трем претендентам по трехбалльной системе — показана на рис. 8.5.
РИСУНОК 8.5
Это распределение предпочтений в типичной версии проблемы комитета. Более низкие баллы обозначают большее предпочтение (например, Энн предпочитает, скорее, Джо Шмоу нежели Джейн Доу, и Джейн Доу — нежели Эйнштейна).
ЧЛЕНЫ КОМИССИИ
Кандидаты
Энн
Боб
Синди
Дэн
Эллен
Джо Шмоу Джейн Доу Эйнштейн
1 2 3
1 3 2
2 3 1
3 1 2
3 1 2
120
Представьте, что вы глава комитета, вы знаете всех претендентов и хотели бы, чтобы выбрали Эйнштейна. Что вы сделаете?
Ответ следующий: вы должны избежать прямого выбора между Эйнштейном и Джейн Доу, потому что трое членов комитета предпочли Доу Эйнштейну (Энн, Дэн и Эллен). Вместо этого вы должны попросить членов комитета выбрать между Шмоу и Доу и после того, как Шмоу победит, попросить выбрать между Шмоу и Эйнштейном. С другой стороны, если вы хотите победы Доу, вы должны сперва провести голосование между Шмоу и Эйнштейном, а потом между Эйнштейном и Доу. Поскольку выбор членов комиссии нетранзитивен при условии, что решает большинство, на основании парного сравнения, человек, определяющий повестку, имеет контроль над выборами.
Обратимость предпочтений
Если нетранзитивность не самое худшее, то в некоторых случаях предпочтения «обратимы» в зависимости от того, в каком порядке они были произведены. Одно из первых исследований, зафиксировавших необратимости предпочтения, было опубликовано Сарой Лихтенштейн и Полем Словиком в 1971 году. Лихтенштейн и Словик писали, что выбор между двумя лотереями может включать в себя более разнообразные психологические процессы, чем подсчет и оценка каждой из альтернатив в отдельности (т.е. установление количества долларов, как они выразились). Оба они предположили, что выбор должен в основном определяться шансами на выигрыш, тогда как оценка должна в первую очередь зависеть от суммы, которую можно выиграть или проиграть.
Они проверили эту гипотезу в трех экспериментах. В каждом опыте они сначала знакомили испытуемых с несколькими парами пари. Каждая пара имела близкие ожидаемые величины, но одна всегда имела высокую возможность выигрыша, а другая — высокую ставку (см. рис. 8.6). После того как испытуемые определяли, какое пари выбирают из каждой пары, они оценивали лотереи каждую в отдельности. Оценки собирались следующим образом: испытуемым говорили, что они стали обладателями лотерейного билета, и спрашивали, за какую минимальную сумму они бы согласились его продать. (121:)
РИСУНОК 8.6
Эти азартные игры были использованы Сарой Лихтенштейн и Полем Словиком в эксперименте по обратимости предпочтений. ОЦ — ожидаемая ценность (взято из Лихтенштейн и Словика, 1971).
Пара
Наибольшая
оц
Наибольший
оц
вероятность
выигрыш
1
99% выиграть $4
$3,95
33% выиграть $16
$3,94
1% проиграть $1
67% проиграть $2
2
95% выиграть $2,50
$2,34
40% выиграть $8,50
$2,50
5% проиграть $0,75
60% проиграть $1,50
3
95% выиграть $3
$2,75
50% выиграть $6,50
$2,75
5% проиграть $2
50% проиграть $1
4
90% выиграть $2
$1,60
50% выиграть $5,25
$1,88
10% проиграть $2
50% проиграть $1,50
5
80% выиграть $2
$1,40
20% выиграть $9
$1,40
20% проиграть $1
80% проиграть $50
6
80% выиграть $4
$3,10
10% выиграть $40
$3,10
20% проиграть $50
90% проиграть $1
В первом эксперименте студенты выбирали пари, которые бы они предпочли заключить, и определяли, за какую минимальную сумму они согласились бы продать лотерейный билет. Для измерения обратимости предпочтения Лихтенштейн и Словик подсчитали процентное отношение продажной цены лотерей с высоким выигрышеми лотерей с большим шансом на успехв каждой паре. Исследователи обнаружили, что 73% испытуемых постоянно показывали обратимость предпочтения. Второй эксперимент в общих чертах повторял первый, но способ оценки был иной, а в третьем проводились длинная и точная инструкции для каждого испытуемого в отдельности, а лотереи разыгрывались по-настоящему. И второй, и третий опыты продемонстрировали убедительную обратимость предпочтения.
Конечно, обратимость, обнаруженная Лихтенштейном и Словиком в 1971 году, была тщательно проведенным лабораторным экспериментом, и по-прежнему стоит вопрос: встречается ли это явление за пределами лаборатории? Чтобы ответить на этот вопрос, Лихтенштейн и Словик в 1973 году повторили эксперимент в казино в Лас-Вегасе. Вооружившись компьютером и рулеткой, они собрали данные у 44 игроков (включая семь профессионалов). (122 :)
Результаты оказались впечатляющими. В случаях, когда люди предпочитали игру с большим шансом на победу игре с большим выигрышем, 81% из них оценивал выше (дороже) игру с большим выигрышем. Эта пропорция обратимости даже выше, чем обнаруженная при первом эксперименте. Видно, таким образом, что обратимость предпочтений не ограничивается лабораторией, а проявляется у людей с опытом принятия решений, к тому же заинтересованных в этих решениях материально.
Со времени этих первых экспериментов был поставлен ряд опытов, повторяющих и продолжающих базовые исследования Лихтенштейн и Словика (Гретер и Плотт, 1979; Шкейд и Джонсон, 1989; Словик, Гриффин и Тверски, 1990; Словик и Лихтенштейн, 1983; Тверски, Словик и Канеман, 1990). Обратимость предпочтения сильна и не снижается при финансовой заинтересованности (Тверски, Словик и Канеман, 1990). Когда людей просят выбрать одно из двух пари, они уделяют основное внимание шансам на выигрыш, но когда их просят назвать цену каждого пари, они смотрят на то, каков возможный выигрыш.