Капра Фритьоф - Паутина жизни. Новое научное понимание живых систем
Появление концепции самоорганизации
Концепция самоорганизации возникла уже в первые годы кибернетики, когда ученые начали разрабатывать математические модели, представляющие логику, свойственную нейронным сетям. В 1943 г. нейробиолог Уоррен Мак-Каллок и математик Уолтер Питтс опубликовали новаторскую статью, озаглавленную «Логическое исчисление идей, присущих нервной деятельности»., в которой показали, что логика любого физиологического процесса, любого поведения может быть трансформирована в правила для построения сети17.
Авторы представили идеализированные нейроны в виде двоичных переключателей — элементов, которые могут находиться в одном из состояний «вкл» или «выкл», — и дали модель нервной системы как сложной сети этих двоичных переключателей. В сети Мак-Каллока-Пит-тса узлы «вкл-выкл» связаны друг с другом таким образом, что активность каждого узла управляется предыдущей активностью других узлов в соответствии с некоторым «правилом переключения». Например, данный узел может в следующий момент переключиться во «вкл» только в случае, если определенное количество смежных с ним узлов находятся в этот момент в положении «вкл». Мак-Каллоку и Питтсу удалось показать, что, хотя двоичные сети такого рода — лишь упрощенные модели, они являются хорошим приближением сетей, составляющих нервную систему.
В 50-е годы ученые начали строить реальные модели таких двоичных сетей; некоторые из моделей содержали в узлах маленькие лампочки, то зажигающиеся, то гаснущие в соответствии с состоянием узла. К великому удивлению ученых, в большинстве цепей после короткого периода беспорядочного мерцания возникали некоторые упорядоченные паттерны. Можно было видеть, как по сети проходили волны мерцания или же наблюдались повторяющиеся циклы. Даже в том случае, когда начальное состояние сети выбиралось произвольно, в ней через некоторое время спонтанно возникали упорядоченные паттерны, и именно это спонтанное возникновение порядка стало известно как самоорганизация.
Как только этот многообещающий термин появился в литературе, системные философы стали широко использовать его в различных контекстах. Росс Эшби в одной из своих ранних работ, вероятно, впервые описал нервную систему как «самоорганизующуюся»18. Физик и кибернетик Хайнц фон Форстер сыграл роль главного катализатора идеи самоорганизации в конце 50-х, организуя конференции по этой теме, оказывая финансовую помощь многим участникам и публикуя их статьи19.
В течение двух десятилетий Форстер поддерживал междисциплинарную группу, созданную при Университете Иллинойса для изучения самоорганизующихся систем. Она называлась Лабораторией биокомпьютеров и представляла собой тесный круг друзей и коллег, которые работали вдалеке от редукционистского направления и чьи идеи, опережающие время, широко не публиковались. Тем не менее эти идеи стали семенами, из которых в конце 70-х и в 80-е годы выросло множество удачных моделей самоорганизующихся систем.
Сам Хайнц фон Форстер внес свой вклад в теоретическое понимание самоорганизации гораздо раньше. Его исследования касались понятия порядка. Он задался вопросом: существует ли мера порядка, которую можно было бы использовать для оценки увеличения порядка, обусловленного «организацией»? Для решения этой проблемы Форстер использовал концепцию «избыточности», оформленную математически в рамках теории информации Клодом Шэнноном; избыточность и есть мера относительного порядка системы по отношению к изначальному максимальному беспорядку20.
Позже этот подход был вытеснен новой математикой сложных систем, однако в конце 50-х он позволил Форстеру разработать первую качественную модель самоорганизации в живых системах. Он ввел выражение «порядок из шума», подчеркнув тем самым, что самоорганизующаяся система не просто «импортирует» порядок из своего окружения, но отбирает богатую энергией материю, интегрирует ее в свою структуру и таким способом повышает уровень собственного внутреннего порядка.
В течение 70-х и 80-х годов ключевые идеи этой ранней модели были усовершенствованы и развиты исследователями из многих стран; феномен самоорганизации в разнообразных системах, от микроскопических до очень крупных, изучали Илья Пригожий в Бельгии, Герман Хакен и Манфред Эйген в Германии, Джеймс Лавлок в Англии, Линн Маргулис в США, Умберто Матурана и Франциско Варела в Чили21. Все полученные ими модели самоорганизующихся систем обладают некоторыми очень важными общими характеристиками, которым предстоит стать фундаментом единой теории живых систем; очерк такой теории и предлагается к обсуждению в этой книге.
Первое важное отличие между изначальной концепцией самоорганизации в кибернетике и более сложными поздними моделями состоит в том, что последние предусматривают создание новых структур и новых режимов поведения в ходе процесса самоорганизации. Для Эшби все возможные структурные изменения происходят в рамках «резерва разнообразия» структур, а шансы на выживание системы зависят от богатства или «необходимого разнообразия» этого резерва. Здесь не существует ни творчества, ни развития, ни эволюции. Поздние модели, напротив, включают создание новых структур и режимов поведения в процессе развития, обучения и эволюции.
Вторая общая для этих моделей самоорганизации особенность заключается в том, что все они представляют открытые системы, функционирующие вдали от состояния равновесия. Для того чтобы осуществлялась самоорганизация, необходим непрерывный поток материи и энергии сквозь систему. Удивительное внезапное зарождение новых структур и новых форм поведения — самое важное отличительное свойство самоорганизации — возможно только при том условии, что система далека от равновесия.
Третья особенность самоорганизации, тоже общая для всех моделей, — нелинейная взаимосвязанность компонентов системы. Физически этот нелинейный паттерн выражается в появлении петель обратной связи; математически он описывается нелинейными уравнениями.
Суммируя эти три характеристики самоорганизующихся систем, можно сказать, что самоорганизация — это спонтанное зарождение новых структур и новых форм поведения в далеких от состояния равновесия открытых системах, которое характеризуется появлением внутренних петель обратной связи и математически описывается нелинейными уравнениями.
Диссипативные структуры
Первым и, вероятно, наиболее впечатляющим подробным описанием самоорганизующихся систем стала теория диссипативных структур химика и физика Ильи Пригожина, русского по рождению, Нобелевского лауреата и профессора химии в Свободном Университете в Брюсселе. Пригожий разработал свою теорию на основе изучения физических и химических систем, но, согласно его собственным воспоминаниям, к этому его побудили размышления над природой жизни:
Меня чрезвычайно интересовала проблема жизни… Я всегда думал, что само существование жизни говорит нам нечто очень важное о природе22.
Наибольший интерес у Пригожина вызывал тот факт, что живые организмы способны поддерживать свою жизнь в условиях неравновесия. Он увлекся системами, далекими от теплового равновесия, и начал интенсивные исследования, задавшись целью определить точные условия, при которых неравновесные состояния могут быть устойчивыми.
Радикальный прорыв Пригожий осуществил в начале 60-х, когда понял что системы, далекие от равновесия, должны описываться нелинейными уравнениями. Четкое понимание связи между отдаленностью от равновесия и нелинейностью позволило Пригожину уловить направление исследований, кульминацией которых десятилетие спустя стала его теория самоорганизации.
Решая загадку устойчивости вдали от равновесия, Пригожий не стал изучать живые системы, а обратился к гораздо более простому феномену тепловой конвекции, который теперь известен как неустойчивость Бенара и считается классическим случаем самоорганизации. В начале века французский физик Анри Бенар обнаружил, что подогрев тонкого слоя жидкости может привести к образованию странным образом упорядоченных структур. Когда жидкость равномерно подогревается снизу, устанавливается непрерывный тепловой поток, направленный снизу вверх. Сама жидкость остается неподвижной, действует только теплопроводность. Тем не менее когда разность температур между нижней и верхней поверхностью достигает определенного критического значения, тепловой поток сменяется тепловой конвекцией, при которой тепло передается через последовательное движение огромного количества молекул.
В этот момент возникает поразительный упорядоченный паттерн шестиугольных ячеек («медовых сот»), в которых горячая жидкость поднимается вверх по центру ячеек, в то время как более холодная опускается вниз вдоль стенок ячеек (рис. 5–1).