Kniga-Online.club
» » » » Даниэль Канеман - Думай медленно... решай быстро

Даниэль Канеман - Думай медленно... решай быстро

Читать бесплатно Даниэль Канеман - Думай медленно... решай быстро. Жанр: Психология издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Приведенная на рисунке 1 функция ценности (а) определена на выигрышах и проигрышах, а не на полном богатстве, (б) вогнутая на области выигрышей и выпуклая на области проигрышей, (в) значительно круче для проигрышей, чем для выигрышей. Последнее свойство, которое мы назвали «неприятие потерь», выражает догадку, что потеря Х долларов сильнее пугает, чем выигрыш Х долларов привлекает. Неприятие потерь объясняет нежелание людей держать пари с равными ставками: привлекательность возможного выигрыша совершенно недостаточна для компенсации неприятности возможного проигрыша. Например, большинство в выборке студентов отказывались ставить 10 долларов на бросок монеты, если выигрыш составлял меньше 30 долларов.

Допущение о неприятии риска сыграло центральную роль в экономической теории. Однако как вогнутость функции ценности для выигрышей приводит к неприятию риска, так и выпуклость функции для проигрышей приводит к стремлению к риску. В самом деле, стремление к риску в проигрышах – сильный эффект, особенно когда значительна вероятность проигрыша. Рассмотрим, например, ситуацию, в которой человек вынужден выбирать между 85%-ной вероятностью потерять 1000 долларов (и 15%-ной вероятностью не потерять ничего) и гарантированной потерей 800 долларов. Значительное большинство людей предпочитают игру гарантированным потерям. Это выбор стремления к риску, потому что математическое ожидание игры (–850 долларов) ниже ожидания гарантированной потери (–800 долларов). Стремление к риску в области проигрыша было подтверждено несколькими исследователями (Fishburn and Kochenberger 1979; Hershey and Schoemaker 1980; Payne, Laughhunn, and Crum 1980; Slovic, Fischhoff, and Lichtenstein 1982). Это же наблюдалось в отношении событий, не связанных с деньгами, например при выборе продолжительности боли (Eraker and Sox 1981) или приемлемого риска потери человеческих жизней (Fischhoff 1983; Tversky 1977; Tversky and Kahneman 1981). Правильно ли избегать риска в области выигрыша и идти на риск в области проигрыша? Эти предпочтения согласуются с убедительными интуитивными догадками о субъективной ценности выигрыша и проигрыша, и можно предположить, что люди подчиняются своим собственным ценностям. Однако мы еще увидим, что S-образная функция ценности ведет к выводам, нормативно неприемлемым.

Чтобы разобраться с нормативностью, мы обратились к теории принятия решений. Основы современной теории принятия решений содержатся в новаторской работе фон Неймана и Моргенштерна (1974), предложи вшей несколько качественных принципов, или аксиом, которые должны управлять предпочтениями при рациональном принятии решений. В число аксиом входят транзитивность (если А предпочтительнее Б и Б предпочтительнее В, то А предпочтительнее В) и перенос (если А предпочтительнее Б, то равные шансы получить А или В предпочтительнее равных шансов получить Б или В), а также другие, более формальные условия. Нормативный и дескриптивный статус аксиом рационального выбора стал темой широких дискуссий. В частности, существуют убедительные свидетельства, что люди не всегда подчиняются аксиоме переноса, и нормативные достоинства этой аксиомы часто оспариваются (например, Allais and Hagen 1979). Однако любой анализ рационального выбора включает два принципа: доминантность и инвариантность. Доминантность требует следующего: если шанс А (по крайней мере) не хуже шанса Б во всех отношениях и лучше Б хотя бы по одному критерию, то А должно быть предпочтительнее Б. Инвариантность требует, чтобы порядок предпочтения вариантов не зависел от того, в каком виде они представлены. В частности, два варианта, признанные эквивалентными при предложении вместе, должны дать одинаковые предпочтения, будучи предложены порознь. Далее мы покажем, что требование инвариантности, с виду простое и безобидное, обычно не выполняется.

Формулировка исходов путем рамочного анализа (фрейминг)

Перспективы в условиях риска характеризуются возможными исходами и вероятностями этих исходов. Впрочем, одни и те же варианты можно сформулировать или описать по-разному (Tversky and Kahneman 1981). Например, возможные исходы игры можно описать или как выигрыш и проигрыш относительно статус-кво, или как новый размер богатства относительно исходного уровня. Инвариантность требует, чтобы подобные изменения в описании исходов не влияли на порядок предпочтений. Следующая пара задач показывает, как нарушается это требование. Общее количество респондентов в каждой задаче обозначим N; процент выбравших каждый вариант указан в скобках.

Задача 1 (N=152)

Представьте, что в США идет подготовка к эпидемии необычной азиатской болезни, которая, по прогнозам, убьет 600 человек. Предложены две альтернативных программы борьбы с заболеванием. Допустим, точные научные оценки последствий для каждой программы таковы:

Если будет принята программа А, 200 человек будут спасены (72%).

Если будет принята программа Б, с вероятностью 1/3 будут спасены 600 человек и с вероятностью 2/3 никто не спасется (28%).

Какую из двух программ выберете вы?

В формулировке Задачи 1 имплицитно содержится точка отчета, в соответствии с которой болезнь может унести 600 жизней. Среди возможных исходов – точка отсчета и два возможных выигрыша, определяемых количеством спасенных жизней. Как и ожидалось, предпочтение отдается неприятию риска: очевидное большинство респондентов предпочли гарантированное спасение 200 жизней игре, в которой с вероятностью ⅓ будут спасены 600 жизней. Теперь рассмотрим другую задачу, в которой та же история сопровождается другой формулировкой возможных исходов двух программ.

Задача 2 (N=155)

Если будет принята программа В, 400 человек умрут (22%).

Если будет принята программа Г, с вероятностью 1/3 никто не умрет и с вероятностью 2/3 умрут 600 человек (78%).

Легко убедиться, что варианты В и Г в Задаче 2 в реальности ничем не отличаются от вариантов А и Б соответственно в Задаче 1. Однако вторая версия предлагает точку отсчета, в которой от болезни не умрет никто. Лучший исход – достижение этого результата, а альтернативы – потери, измеряемые количеством людей, которые умрут от болезни. Ожидается, что испытуемые, оценивающие варианты в этих терминах, скорее пойдут на стремление к риску в игре (вариант Г), чем на гарантированную потерю 400 жизней. Как выяснилось, уровень стремления к риску во второй версии задачи больше, чем уровень неприятия риска в первой.

Инвариантность терпит неудачу повсеместно и постоянно. Опытные респонденты допускают ошибки не реже неискушенных испытуемых, и эффект сохраняется, даже если респонденты отвечают на второй вопрос через несколько минут после первого. Респонденты, которым разъяснили несоответствие ответов, обычно бывают озадачены. Даже перечитав задачи, они все равно готовы к неприятию риска в версии со «спасенными жизнями» и стремятся к риску в версии с «потерянными жизнями»; при этом они хотят соблюдать инвариантность и дать согласованные ответы по обеим версиям. При таком упорстве эффекты установления рамок («фрейминга») больше напоминают иллюзии восприятия, чем ошибки вычислений.

Следующая пара задач показывает предпочтения, нарушающие требования доминантности рационального выбора.

Задача 3 (N=86)

Выберите вариант:

Д. Выиграть 240 долларов с вероятностью 25% и проиграть 760 долларов с вероятностью 75% (0%).

Е. Выиграть 250 долларов с вероятностью 25% и проиграть 750 долларов с вероятностью 75% (100%).

Очевидно, что Е предпочтительнее Д. Соответственно, все респонденты сделали этот выбор.

Задача 4 (N=150)

Представьте, что вам нужно принять два решения одновременно.

Сначала изучите оба выбора, затем укажите, что вы предпочтете.

Выбор 1

А. Гарантированно получить 240 долларов (84%).

Б. Выиграть 1000 долларов с вероятностью 25% и не получить ничего с вероятностью 75% (16%).

Выбор 2

В. Гарантированно потерять 750 долларов (13%).

Г. Потерять 10 00 долларов с вероятностью 25% и не потерять ничего с вероятностью 75% (87%).

Как и ожидалось из предварительного анализа, значительное большинство предпочли неприятие риска и гарантированный выигрыш позитивной игре в первом решении; еще больше респондентов предпочли стремление к риску и игру гарантированным потерям во втором решении. 73% респондентов выбрали А и Г, и только 3% выбрали Б и В. Такая же картина наблюдалась в модифицированной версии задачи, с уменьшенными ставками, в которой студенты выбрали реальную игру.

Поскольку респонденты рассматривали в Задаче 4 два решения одновременно, они продемонстрировали предпочтение А и Г перед Б и В. Однако выбранная связка в действительности уступает отвергнутой. Прибавка гарантированного выигрыша 240 долларов (вариант А) к варианту Г дает вероятность 25% выиграть 240 долларов и вероятность 75% проиграть 760 долларов. Это в точности соответствует варианту Д в Задаче 3. Точно так же добавление гарантированного проигрыша 750 долларов (вариант В) к варианту Б дает вероятность 25% выиграть 250 долларов и 75% – потерять 750 долларов. Это в точности соответствует варианту Е в Задаче 3. Таким образом, реакция на формулировку и S-образность функции ценности приводят к нарушению доминантности в наборе совпадающих решений.

Перейти на страницу:

Даниэль Канеман читать все книги автора по порядку

Даниэль Канеман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Думай медленно... решай быстро отзывы

Отзывы читателей о книге Думай медленно... решай быстро, автор: Даниэль Канеман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*