Анна Анастази - Дифференциальная психология. Индивидуальные и групповые различия в поведении
Кроме этого, отклонения от нормального распределения могут проявляться в некоторой заостренности или уплощенности верхней части графика.
На рисунке 12 изображены два графика, один из которых более заострен, а другой — более уплощен, чем теоретический нормальный график. В первом из них (график А) наблюдается чрезмерный рост количества случаев в центре с одновременным уменьшением их количества у крайних значений шкалы. Во втором (график В) случаи распределены более равномерно на протяжении длинного отрезка. Мультимодный график можно рассматривать как другой вариант заостренного распределения. Как видно из названия, этот тип графика имеет не одну моду, или не один пик. Таким образом, показатели индивидов будут концентрироваться в двух и более различных точках шкалы. Пики могут быть в равной степени высокими или один пик может быть выше другого.
Рис. 12. Распределение (А) заостренного типа и (В) уплощенного
Графики распределений, существенно отличающиеся от нормальных и проявляющих одну или несколько характеристик, описанных выше, появляются время от времени при наличии некоторых условий. Знание этих условий необходимо для правильной интерпретации частотных распределений. Главными факторами, которые могут оказать влияние на форму графика распределения, являются: неадекватность выборки, использование неудачных или непригодных средств измерения и некоторые факторы, воздействующие непосредственно на исследуемое качество. Сейчас мы рассмотрим по порядку каждое из этих условий.
Выборка. Чтобы получить любой заданный тип распределения, достаточно просто специально подобрать испытуемых, соответствующих этому типу. Естественно, такая процедура не будет объективной. Подобная изменчивость может быть результатом действия факторов отбора, на которые исследователь не всегда обращает внимание. Каждый раз, когда график распределения существенно отличается от нормального, встает вопрос об адекватности выборки.
Например, скошенность может быть результатом включения в состав единого распределения двух нормально распределенных групп, имеющих выраженные отличия друг от друга по значению. Иллюстрацией такого эффекта может быть рисунок 13. В варианте А даны отдельные графики распределения по двум группам, у одной из которых более низкое среднеарифметическое значение и меньше разброс результатов, чем у другой. В варианте В график имеет скошенный вид, который получился в результате объединения графиков распределения двух групп в общий график распределения.
В. Две соединенные группы
Б. Две соединенные группы
Рис. 13. Асимметрия, причиной которой является объединение групп с разными значениями
Рис. 14. Бимодальная результирующая, полученная от объединения двух групп, имеющих сильно различающиеся области значений.
Мультимодный график также получается тогда, когда тестируемая выборка не является случайной по отношению к общей популяции, но состоит из индивидов, отобранных с разных уровней и объединенных в единую группу. Например, группа, состоящая из 5- и 10-летних детей, будет непременно давать бимодальное распределение как по показателям теста на умственные способности, так и по результатам измерения роста, веса и многих других характеристик. Если бы в эту выборку были включены группы детей от 6 до 9 лет, то распределение имело бы вид нормального, колоколообразной формы графика.
Как получаются бимодальные распределения в результате подобного объединения двух сильно различающихся групп, видно на рисунке 14. Легко заметить, что у них мало общих точек. Когда их много, как в случае с близкими возрастными группами, результирующий объединенный график будет нормальным и с одной вершиной.
Другие особенности могут зависеть от того, заключен ли сам по себе в выборке уплощенный график распределения, или, наоборот, имеющий форму пика. Последнее случается, например, тогда, когда выборка носит исключительно гомогенный характер. В заключение отметим, что неограниченное количество незначительных отклонений и изменений в графиках распределения может быть следствием тестирования малых групп. Графики, начерченные на основании обработки малого количества случаев, обычно представляют собой неровные, зубчатые линии — так проявляется разброс индивидуальных значений. В принципе, чем больше выборка, тем «более гладким» будет график распределения.
Средства измерения. Некоторые особенности тестов или других средств измерения, применяющихся для сбора данных, могут также влиять на форму результирующего графика распределения. Так, если уровень сложности вопросов теста искусственно завышен или занижен, то это может сделать форму графика скошенной. Такое происходит, когда какой-нибудь тест предлагают пройти группе, для которой он не предназначен. Например, если тест на умственные способности, составленный для учеников 3–8 классов, предложить учащимся колледжа, подавляющее большинство испытуемых покажут результаты, близкие к максимальным; низких же показателей не будет вообще. Точно так же, если один из многочисленных тестов, разработанных для первокурсников колледжа, дать учащимся начальной школы, это вызовет резкое увеличение количества значений, близких к нулю, и распределение будет также асимметричным.
Очевидно, что на основании таких данных нельзя делать вывод об аномальном распределении умственных способностей среди детей или студентов колледжа. Скошенное распределение, полученное в этих случаях, будет свидетельствовать о том, что уровень сложности теста не включает в себя в равной мере более сложные и более простые задания. В одном случае все испытуемые покажут очень высокие значения, в то время как, если бы тест включал в себя вопросы посложнее, результаты испытуемых распределились бы по всей шкале и более равномерно. Иллюстрацией к этому может служить рисунок 15, на котором сплошная линия показывает реальное распределение способностей в группе, а пунктирная линия — результат использования теста с низким уровнем сложности. Подобным образом, большое количество нулевых значений или значений, близких к нулю, мы получим, если тест окажется для группы слишком сложным. Подбирая для данной группы тест, надо удостовериться, что испытуемые способны показывать результаты, которые будут отражены на обоих концах шкалы. Их показатели должны существенно отличаться как от нуля, так соответственно и от сверхвысоких значений.
Рис. 15. Скошенное распределение, полученное в результате использования теста с низким уровнем сложности
I
18,000
16,000
14,000
12,000
10,000
8,000
6,000
4,000
2,000
о см
о го
о
о
1Л
о со
о
Показатели теста
со
* Последний интервал не покрывает 10 пунктов, поэтому максимальным показателем теста является 76.
Рис. 16. Распределение показателей 70805 11-летних шотландских детей по данным вербального группового теста на умственные способности. (Данные Шотландского совета по исследованиям в образовании, 25, с. 82.)
Реальным примером того, какой эффект на низких значениях шкалы возникает при использовании теста с неадекватным уровнем сложности, является рисунок 16. Данные, отраженные в этом распределении, были собраны в 1947 году в ходе проведения одного исследования в Шотландии, целью которого было протестировать каждого 11-летнего ребенка, родившегося в Шотландии. Данное исследование представляет собой одно из самых широких из когда-либо предпринимавшихся. В нем приняли участие 70805 детей, составивших выборку, которую авторы объявили «полной»; в нее не вошли только те дети, чьи сенсорные или моторные возможности не позволяли им пройти тест наравне с другими, дети, отсутствовавшие в школе в тот день, когда проводилось тестирование, и дети, посещавшие некоторые частные школы. Согласно подсчетам, в тестировании приняли участие 88 % всех 11-летних детей, живших в Шотландии в то время. Всем испытуемым давали специально разработанный 45-минутный групповой тест на умственные способности, который включал в себя две страницы с рисунками и пять страниц с вербальными заданиями.
Распределение показателей по вербальному тесту дано на рисунке 16. И хотя в целом это распределение показывает скопление результатов в центре и их активное снижение в точках крайних значений, в нем можно заметить ряд несоответствий. Это касается, прежде всего, того конца шкалы, на котором расположены низкие значения. Фактически 13,9 % случаев, падающих на интервал 0–9, показывают, что нулевое значение теста, возможно, оказалось слишком завышенным для данной популяции. Если бы в тест были включены более легкие вопросы, то весьма вероятно, что значения распределились бы еще по нескольким интервалам, которые оказались бы ниже нулевого уровня данного теста.