Kniga-Online.club
» » » » Митио Каку - Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Митио Каку - Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Читать бесплатно Митио Каку - Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Следует также указать, что математики Николай Иванович Лобачевский и Янош Бойяи независимо друг от друга открыли неевклидову математику для изогнутых поверхностей. Но их построения ограничивались обычными низшими измерениями.

10

Процитировано в: Белл «Математики», с. 497.

11

Британский математик Уильям Клиффорд, который переводил знаменитую речь Римана для журнала Nature в 1873 г., разъяснил многие основополагающие труды Римана и был, вероятно, первым, кто развил его мысль о том, что искривление пространства вызывает возникновение электромагнитного взаимодействия, придав тем самым идеям Римана более четкую форму. Клиффорд высказал предположение, что эти два таинственных открытия в математике (многомерные пространства) и физике (электричество и магнетизм) – в сущности, одно и то же и что электромагнитное взаимодействие вызвано искривлением многомерного пространства.

Так впервые за 50 лет до Эйнштейна была высказана догадка о том, что сила – не что иное, как искривление самого пространства. Предположение Клиффорда о том, что электромагнетизм вызывают колебания в четвертом измерении, предшествовало работе Теодора Калуцы, который также пытался объяснить электромагнетизм высшими измерениями. Таким образом, Клиффорд и Риман предвосхитили открытия ученых XX в., догадавшись, что многомерное пространство способно дать простое и элегантное описание взаимодействий. Впервые было верно оценено истинное физическое значение высших измерений – как теории пространства, дающей нам объединяющую картину взаимодействий.

Эти пророческие взгляды были изложены математиком Джеймсом Сильвестром, который в 1869 г. писал: «Мистер Клиффорд позволил себе высказать примечательные предположения касательно способности человека на основании некоторых необъясненных явлений света и магнетизма сделать вывод о том, что наше трехмерное пространство подвергается воздействию пространства четырех измерений… аналогично бумаге, которую комкают» (процитировано в: Хендерсон «Четвертое измерение и неевклидова геометрии в современном искусстве», с. 19).

В 1870 г. в статье с интригующим названием «О пространственной теории вещества» Клиффорд напрямую пишет, что «эта разновидность искривления пространства – то, что в действительности происходит при явлении, которое мы называем движением материи, будь она осязаемой или неосязаемой». (Клиффорд Уильям «О пространственной теории вещества» (William Clifford, On the Space-Theory of Matter, Proceedings of the Cambridge Philosophical Society 2, 1876: 157–158).

12

А точнее, в условиях N измерений риманов метрический тензор gμѵ представляет собой матрицу N×N, определяющую расстояние между двумя точками, так что бесконечно малое расстояние между двумя точками дается выражением ds² = ∑dxμ gμѵ dxѵ. В ограниченном плоском пространстве риманов метрический тензор становится диагональным, т. е. gμѵ = δμѵ, в итоге все формулы сводятся к теореме Пифагора для N измерений. Отклонение метрического тензора от δμѵ, грубо говоря, показывает, насколько пространство отличается от плоского. На основании метрического тензора можно построить риманов тензор кривизны, представленный Rβμѵα.

Искривление пространства в любой данной точке можно измерить, нарисовав в этой точке окружность и измерив ее площадь. В плоском двумерном пространстве площадь круга равна πr². Но в условиях положительной кривизны, например, на сферической поверхности, эта площадь меньше πr². А если кривизна отрицательная и поверхность седлообразная или воронкообразная, площадь круга больше πr².

Строго говоря, принято считать, что кривизна скомканного листа бумаги равна нулю. Дело в том, что площади кругов, нарисованных на этой скомканной бумаге, по-прежнему равны πr². В римановом примере взаимодействия, созданного смятым листом бумаги, мы косвенным образом подразумеваем, что бумага деформирована, растянута и сложена, поэтому кривизна отлична от нуля.

13

Процитировано в: Белл «Математики», с. 501.

14

Процитировано в: Белл «Математики», с. 14.

15

Процитировано в: Белл «Математики», с. 14.

16

В 1917 г. друг Эйнштейна физик Пауль Эренфест, опубликовал статью под заголовком «Каким образом в фундаментальных законах физики проявляется трехмерность пространства?». Эренфест задался вопросом, возможны ли звезды и планеты в высших измерениях. Например, свет свечи тускнеет по мере нашего удаления от нее. Так и гравитационное притяжение звезды по мере удаления от нее слабеет. Согласно Ньютону сила гравитации уменьшается по закону обратных квадратов. Если наше расстояние от свечи или звезды увеличивается в два раза, свет или гравитационное притяжение становится в четыре раза слабее. Если расстояние увеличивается втрое, они слабее в девять раз.

Если пространство четырехмерное, тогда свет свечи и гравитация должны ослабевать гораздо быстрее по обратному кубическому закону. Удвоение расстояния от свечи или звезды ослабит свет или гравитацию в восемь раз.

Может ли Солнечная система существовать в таком четырехмерном мире? В принципе, может, но орбиты планет вряд ли будут стабильными. Малейшей вибрации хватит, чтобы изменить их. Со временем все планеты отклонятся от своих орбит и врежутся в Солнце.

Но и Солнце не сможет существовать в мире высших измерений. Сила гравитации стремится сжать Солнце, ее уравновешивает сила термоядерных реакций, которая стремится разорвать его. Таким образом, Солнце – результат точного равновесия сил ядерного взаимодействия, способных взорвать его, и сил гравитационного взаимодействия, способных сжать его в точку. В многомерной Вселенной это шаткое равновесие неизбежно нарушится, что приведет к спонтанному схлопыванию звезд.

17

Хендерсон «Четыре измерения и неевклидова геометрия в современном искусстве», с. 22.

18

Цёлльнер обратился в спиритуализм в 1875 г., когда побывал в лаборатории Крукса – первооткрывателя элемента таллия, изобретателя катодно-лучевой трубки, редактора научного журнала Quarterly Journal of Science. Катодно-лучевая трубка Крукса произвела революцию в науке: каждый, кто смотрит телевизор, пользуется компьютерным монитором, играет в видеоигры или проходит рентгеновское обследование, обязан всему этому знаменитому изобретению Крукса.

Крукс не был сумасбродом. Он занимал видное положение в британском научном сообществе, его профессиональных наград хватило бы на украшение целой стены. В 1897 г. его посвятили в рыцари, в 1910 г. удостоили ордена «За заслуги». Живой интерес к спиритуализму пробудила в нем трагическая смерть брата Филипа, в 1867 г. умершего от желтой лихорадки. Крукс стал видным членом, а позднее и президентом Общества паранормальных (психических) исследований, в которое входили многие выдающиеся ученые конца XIX в.

19

Процитировано в: Руди Рукер «Четвертое измерение» (Rudy Rucker, The Fourth Dimension, Boston: Houghton Mifflin, 1984), с. 54.

20

Для того чтобы представить себе, как можно распутать узлы в измерениях, числом превышающих три, вообразим себе два сцепленных кольца. Теперь сделаем двумерный поперечный разрез этой конструкции таким образом, чтобы одно кольцо лежало в плоскости разреза, а второе превратилось в точку (поскольку оно лежит перпендикулярно этой плоскости). Мы получили точку внутри окружности. В высших измерениях мы имеем возможность вывести эту точку за пределы окружности, не разрезая ни одно из колец. Это означает, что два кольца теперь разделены, что нам и требовалось. Значит, узлы в условиях многомерности всегда можно развязать, потому что для этого «достаточно места». Обратите также внимание: вывести точку за пределы окружности в трехмерном пространстве невозможно, по той же причине в мире трех измерений узлы остаются завязанными.

21

Герберт Уэллс «Машина времени» (H. G. Wells, The Time Machine: An Invention, London: Heinemann, 1895), с. 3.

22

Линда Далримпл Хендерсон «Четвертое измерение и неевклидова геометрия в современном искусстве» (Linda Dalrymple Henderson, The Fourth Dimension and Non-Euclidean Geometry in Modern Art, Princeton, N. J.: Princeton University Press, 1983), с. xxi.

23

Там же. Согласно Хендерсон, «четвертое измерение привлекало внимание таких видных представителей мира литературы, как Герберт Уэллс, Оскар Уайльд, Джозеф Конрад, Форд Мэдокс Форд, Марсель Пруст и Гертруда Стайн. Из музыкантов четвертым измерением живо интересовались Александр Скрябин, Эдгар Варез, Джордж Антейл, оно вдохновляло их поиски новых форм во имя высшей реальности» (там же, с. xix – xx).

Перейти на страницу:

Митио Каку читать все книги автора по порядку

Митио Каку - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение отзывы

Отзывы читателей о книге Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение, автор: Митио Каку. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*