Гуру Мадхаван - Думай как инженер. Как превращать проблемы в возможности
Хотя нам в XXI веке эта система может показаться малоэффективной, для 1960-х годов, по мнению Нэнси Поуп, историка технологий в Смитсоновском национальном почтовом музее, ZIP-коды были «революционным нововведением благодаря идее обработки почтовых отправлений на основе цифрового кода». ZIP-коды также помогли усовершенствовать обработку почты, адресованной в американские города с одинаковыми названиями, например Гринвилл, Сейлем или Спрингфилд.
До механизации сотрудники почты сортировали почтовые отправления вручную. «В такой ситуации даже самый умелый работник не смог бы обработать больше 60 писем в минуту, – объясняет Поуп. – Но и этот показатель сделает его лучшим сортировщиком почтовой службы». В среднем же большинству работников удавалось обработать 20–30 отправлений в минуту; к тому же из-за того, что эти процессы выполнялись вручную, не исключалась вероятность ошибок. С автоматизацией ситуация изменилась коренным образом. Машины обрабатывали до 2000 отправлений в минуту, а то и больше, а посему такая система, как ZIP-коды, заложила основу для повышения эффективности почтовой службы в целом.
Зданиям федерального значения – например, Капитолию, Белому дому и Пентагону – были присвоены собственные особые ZIP-коды. Другие страны вскоре начали перенимать идею ZIP-кодов, создавая свои версии цифровых или буквенно-цифровых почтовых индексов. ZIP-коды явились историческим инженерным решением и неотъемлемой частью коммерции и обусловили небывалый рост эффективности почтовой службы, при этом сократив расходы и количество ошибок путем внедрения новых почтовых технологий. Разработка ZIP-кода стала результатом комплексного планирования – долгосрочной стратегии, характерной для многих успешных (и неудачных) крупномасштабных проектов – инженерных, архитектурных и военных. Иногда для реконструкции какой-либо системы требуется ее продуманная, тщательно спланированная деконструкция.
Однако от введения ZIP-кодов в восторге были далеко не все: из-за необходимости запоминать пять цифр. Кроме того, незадолго до этого к телефонным номерам были добавлены трехзначные коды районов, а компании начали требовать номера социального страхования для расчета подоходного налога. Все это смахивало на какой-то числовой заговор, а некоторые даже усматривали в нем происки коммунистов. Чтобы убедить людей принять такую концепцию оптимизации систем, как ZIP-коды, понадобилась масштабная общенациональная кампания. Ее героем стал рисованный персонаж – мистер Зип. Легендарная певица Этель Мерман озвучила своим уверенным голосом рекламную песню: «Знакомьтесь, ZIP-код нам удобство несет! Почту отправляй, пять цифр не забывай!»
Влияние ZIP-кодов простирается далеко за рамки почты. Для интернет-компаний сейчас обычное дело – извлекать выгоду из почтовой инженерной инфраструктуры, созданной в XX веке, для сбора демографических, поведенческих и других данных о своих клиентах. Эти коды стали обязательным элементом для таких мегапроектов, как перепись населения, кампании прямой почтовой рассылки, целевые предложения микромаркетинга – то, что одни превозносят как «системы рекомендаций», а другие критикуют как «потребительский шпионаж», – и авторизация на автозаправках и в супермаркетах. А в Великобритании, например, выражение «лотерея почтового индекса» означает неравенство в предоставлении и качестве медицинских и других услуг общественного характера, то есть идея, что район проживания может определять стандарт услуг, на который следует рассчитывать его обитателям.
Как уже, должно быть, ясно, инженерия в настоящее время – это не только технологии, то есть замена ручного труда машинами. Не менее (а то и более) важную роль в ней играет стратегия. Разработка ZIP-кодов – наряду с тем, как в IBM подошли к вопросу с пробками на дорогах, – стала простой, но дальновидной стратегией оптимизации и помогла решить скорее практическую, чем техническую проблему.
Ученые и практики применяют различные термины для обозначения разницы между техническими и практическими проблемами. Вот примеры: «проблемы» и «сложности»; «тривиальные проблемы» и «опасные проблемы»; «твердая почва» и «болото»; «хорошо структурированные проблемы» и «нечеткие проблемы». Эти термины указывают на принципиальное расхождение. В первой половине каждого примера нужно решить нечто четко определенное. А во второй – поставленная задача не решается только с помощью уравнений или аналитики, для этого понадобится учитывать человеческий и прочие факторы, которые зачастую вносят вклад в эмерджентные свойства. И ZIP-коды, и плата за въезд в перегруженные транспортом районы – примеры практического сочетания технических и социальных аспектов.
А сейчас мы увидим, как крупная интернет-компания применила оптимизацию этого типа к составлению карт и каталогизации нашего мира.
3В Google поставили перед собой амбициозную цель: упорядочить всю имеющуюся в мире информацию. Нью-йоркский офис компании находится в районе Челси, в здании эпохи 1930-х годов, где раньше размещалось портовое управление. Выполненный в основных цветах логотип Google вызывает ассоциации с детским садом, только для взрослых. Оставив позади щелканье клавиш и изобилие бесплатных угощений в буфетах, вы попадаете в кабинет Альфреда Спектора, вице-президента отдела разработок и особых инициатив. Он любит использовать Google Maps, чтобы отслеживать интенсивность дорожного движения и планировать свои поездки. «За последние шесть лет я опаздывал на поезд с Центрального вокзала до Пелема не более трех раз», – уверенно заявляет Спектор.
Спектор и его коллеги работают с верой в то, что у каждой единицы информации есть окно возможностей, срок существования которого ограничен, и нужно суметь завладеть этими данными в правильное время в соответствующем контексте, чтобы извлечь из них пользу. Руководящим принципом для таких, близких к реальному времени технологий, как Google Maps, является непрерывная оптимизация. «Сейчас мы получаем очень эффективные сведения о дорожном движении в Нью-Йорке с красными, бордовыми, зелеными и желтыми индикаторами; и они целиком отражают реальную картину, – рассказывает Спектор. – Так что мы вполне можем снизить интенсивность движения в часы пик на дорогах Нью-Йорка, указывая людям на более удачные варианты проезда».
Идея влиять на дорожное движение в случае заторов или дорожных происшествий отнюдь не нова. Исследователи операций классифицируют это как проблему перераспределения ресурсов, которая особенно актуальна при чрезвычайных ситуациях: нужно предоставить маршрут эвакуации, чтобы люди смогли легко и быстро покинуть опасную зону, и обеспечить маршруты для доступа в нее представителей службы экстренного реагирования. Новаторство Google заключалось в том, что компания поставила мощь информации на службу пользователям, чтобы те могли принимать решения, подкрепленные данными, и варьировать их в зависимости от ситуации.
Коллеги Спектора пишут, что при попытках создать что-то новое наподобие Google Maps они «вместо длительных дискуссий о том, как лучше всего поступить… сразу берутся за дело, а потом уже повторяют и совершенствуют подход». Это призвано подкрепить ключевую миссию компании: «Решать по-настоящему большие проблемы». Вот, к примеру, одна из фундаментальных задач: в совокупности в 195 странах примерно 80 млн км мощеных и грунтовых дорог. «Один раз проехать по ним всем – это все равно что обогнуть земной шар 1250 раз. Даже для Google это устрашающие масштабы», – написали инженеры проекта.
Они начали проект с получения видеоданных со всего мира благодаря последним разработкам в области панорамных изображений на уровне улиц и фотографиям пользователей. Следующим шагом стало создание масштабной модели систем, которая «включает подробные сведения об улицах с односторонним движением и ограничениях поворотов (например, запрещен поворот направо или разворот)». Затем с помощью этой информации Google преобразовывал позицию сенсора, вмонтированного в камеру – а сегодня и в наши телефоны, – в точные данные о расположении на дороге посредством метода под названием оптимизация позы. За этим процессом стоял не какой-то один алгоритм, а группа связанных между собой инструментов.
Инженеры Google обратились к алгоритмам аукциона, которые обычно применяются для определения наилучшего предложения цены лота при одновременном участии нескольких покупателей. Это было нужно для прогнозирования спроса на использование дорог среди людей, заинтересованных в одном и том же маршруте. Инженеры компании применили методы обработки изображений для создания «карт глубин», чтобы закодировать 3D-данные о расстоянии, направлении и прочую местную информацию: дороги, тротуары, здания и строительные работы. Они прибегали к дистанционному зондированию и анализу спутниковых снимков на уровне пикселей, чтобы получить несколько видов любого места, будь то Эйфелева башня или заброшенный шахтерский городок в пустоши Аляски. Инженеры сообща использовали эти инструменты, а сейчас продолжают применять другие, чтобы повысить ценность Google Maps для пользователей.