Kniga-Online.club

Дмитрий Гусев - Удивительная логика

Читать бесплатно Дмитрий Гусев - Удивительная логика. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

В силу всего сказанного надо отметить, что употребление союза ИЛИ всякий раз нуждается в комментарии относительно того, в строгом или нестрогом значении он используется. Понятно, что без этого комментария вполне возможны различного рода недоразумения. Поэтому нередко употребляется своеобразный союз-гибрид ИЛИ/И, указывающий на то, что союз ИЛИ используется в некоем тексте в его нестрогом значении. Таким образом, наиболее целесообразно сформулировать правило оплаты проезда в городском пассажирском транспорте следующим образом: Безбилетный проезд или/и бесплатный провоз багажа наказываются штрафом. В данной, может быть, не совсем удобной, с точки зрения языка, формулировке все возможные разночтения и недоразумения исключаются.

Суждение

Параллельные прямые не пересекаются (Что такое суждение)

Суждение (высказывание) – это форма мышления, в которой что-либо утверждается или отрицается. Например: Все сосны являются деревьями, Некоторые люди – это спортсмены, Ни один кит – не рыба, Некоторые животные не являются хищниками. Рассмотрим несколько важных свойств суждения, которые в то же время отличают его от понятия.

1. Любое суждение состоит из понятий, связанных между собой. Например, если связать понятия карась и рыба, то могут получиться суждения Все караси являются рыбами, Некоторые рыбы являются карасями.

2. Любое суждение выражается в форме предложения (как мы помним, понятие выражается словом или словосочетанием). Однако не всякое предложение может выражать суждение. Как известно, предложения бывают повествовательными, вопросительными и восклицательными. В вопросительных и восклицательных предложениях ничего не утверждается и не отрицается, поэтому они не могут выражать собой суждение. Повествовательное предложение, наоборот, всегда что-либо утверждает или отрицает, в силу чего суждение выражается в форме повествовательного предложения.

Тем не менее есть такие вопросительные и восклицательные предложения, которые только по форме являются вопросами и восклицаниями, а по смыслу что-то утверждают или отрицают. Они называются риторическими. Например, известное высказывание И какой же русский не любит быстрой езды? представляет собой риторическое вопросительное предложение (риторический вопрос), так как в нем в форме вопроса утверждается, что всякий русский любит быструю езду. В подобном вопросе заключено суждение. То же самое можно сказать о риторических восклицаниях. Например, в высказывании Попробуй найти черную кошку в темной комнате, если ее там нет! в форме восклицательного предложения утверждается мысль о невозможности предложенного действия, в силу чего данное восклицание выражает собой суждение. Понятно, что не риторический, а настоящий вопрос (например: Как тебя зовут?) не выражает суждение, точно так же, как не выражает его настоящее, а не риторическое восклицание (например: Прощай, свободная стихия!).

Чтобы лучше уяснить, что такое суждение, рассмотрим несколько примеров.

• Неужели ты не знал, что Земля вращается вокруг Солнца? (Риторический вопрос – является суждением).

• Прощай, немытая Россия! (Восклицание – суждением не является).

• Кто написал философский трактат «Критика чистого разума»? (Вопрос – суждением не является).

• Логика появилась примерно в V в. до н. э. в Древней Греции. (Повествование – является суждением).

• Первый президент Америки. (Понятие – суждением не является).

• Разворачивайтесь в марше! (Восклицание – суждением не является).

• Мы все учились понемногу… (Повествование – является суждением).

• Попробуй-ка двигаться со скоростью света! (Риторическое восклицание – является суждением).

• Средняя школа № 469 г. Москвы. (Понятие – суждением не является).

• Как тебе только не стыдно? (Риторический вопрос – является суждением).

• Каким образом решается знаменитая задача о квадратуре круга? (Вопрос – суждением не является).

• Общая теория относительности А. Эйнштейна. (Понятие – суждением не является).

• Почему нельзя делить на ноль? (Вопрос – суждением не является).

• Бескрайние просторы Вселенной. (Понятие – суждением не является).

• Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов. (Повествование – является суждением).

3. Любое суждение является истинным или ложным.

Если суждение соответствует действительности, оно истинное, а если не соответствует – ложное. Например, суждение Все розы – это цветы является истинным, а суждение Все мухи – это птицы – ложным. Надо отметить, что понятия, в отличие от суждений, не могут быть истинными или ложными. Невозможно, например, утверждать, что понятие школа – истинное, а понятие институт – ложное, понятие звезда – истинное, а понятие планета – ложное и т. п. Но разве понятия Змей Горыныч, Кощей Бессмертный, вечный двигатель не ложные? Нет, эти понятия являются нулевыми (пустыми), но не истинными и не ложными. Вспомним, понятие – это форма мышления, которая обозначает какой-либо объект, и именно поэтому не может быть истинным или ложным. Истинность или ложность – это всегда характеристика какого-то высказывания, утверждения или отрицания, поэтому она применима только к суждениям, а не к понятиям.

4. Суждения бывают простыми и сложными. Сложные суждения состоят из простых, соединенных каким-либо союзом.

Как видим, суждение – это более сложная форма мышления по сравнению с понятием. Неудивительно поэтому, что суждение имеет определенную структуру, в которой можно выделить четыре части: субъект, предикат, связка и квантор.

Субъект (обозначается латинской буквой S) – это то, о чем идет речь в суждении. Например, в суждении Все учебники являются книгами речь идет об учебниках, поэтому субъектом данного суждения выступает понятие учебники.

Предикат (обозначается латинской буквой Р) – это то, что говорится о субъекте. Например, в том же суждении Все учебники являются книгами о субъекте (об учебниках) говорится, что они – книги, поэтому предикатом данного суждения выступает понятие книги.

Связка – это то, что соединяет субъект и предикат. В роли связки могут быть слова есть, является, это и т. п.

Квантор – это указатель на объем субъекта. В роли квантора могут быть слова все, некоторые, ни один и т. п.

Рассмотрим суждение Некоторые люди являются спортсменами. В нем субъектом выступает понятие люди, предикатом – понятие спортсмены, роль связки играет слово являются, а слово некоторые представляет собой квантор. Если в каком-то суждении отсутствует связка или квантор, то они все равно подразумеваются. Например, в суждении Тигры – это хищники квантор отсутствует, но он подразумевается – это слово все. С помощью условных обозначений субъекта и предиката можно отбросить содержание суждения и оставить только его логическую форму. Например, если у суждения Все прямоугольники – это геометрические фигуры отбросить содержание и оставить форму то получится: Все S есть Р. Логическая форма суждения Некоторые животные не являются млекопитающими есть Некоторые S не есть Р.

Субъект и предикат любого суждения всегда представляют собой какие-либо понятия, которые, как мы уже знаем, могут находиться в различных отношениях между собой. Между субъектом и предикатом суждения могут быть следующие логические отношения: равнозначности, пересечения, подчинения и несовместимости.

Отношение равнозначности предполагает, что субъект и предикат представляют собой равнозначные понятия. В суждении Все квадраты – это равносторонние прямоугольники субъект квадраты и предикат равносторонние прямоугольники находятся в отношении равнозначности, потому что квадрат – это обязательно равносторонний прямоугольник, а равносторонний прямоугольник – это обязательно квадрат (рис. 17).

Отношения равнозначности субъекта и предиката иллюстрируют примеры ниже:

Антарктида представляет собой ледовый материк (равнозначность).

Д. И. Менделеев – создатель Периодической системы химических элементов (равнозначность).

Перейти на страницу:

Дмитрий Гусев читать все книги автора по порядку

Дмитрий Гусев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Удивительная логика отзывы

Отзывы читателей о книге Удивительная логика, автор: Дмитрий Гусев. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*