Под знаком кванта. - Леонид Иванович Пономарёв
Так возникла первая большая проблема атомной энергетики: разделение изотопов урана. Вначале ее считали настолько неприступной, что в течение двух лет о ней практически не думали. В самом деле, казалось невероятным, что когда-нибудь удастся разделить химически совершенно идентичные атомы изотопов урана, массы ядер которых различаются всего на полтора процента. Но война меняет представления о границах возможного: уже в 1944 г. были построены и работали заводы по разделению изотопов урана — огромные четырехэтажные корпуса шириной в полкилометра и в километр длиной, потреблявшие энергию электростанции, равной по мощности Днепрогэсу. Технологические детали этого процесса до сих пор хранятся в секрете, но его идея — метод газовой диффузии — хорошо известна.
Если смесь двух газов пропустить сквозь пористую перегородку с отверстиями, которые чуть больше самих атомов, то за перегородкой легкого газа в смеси станет немного больше, чем до перегородки, и, повторяя этот процесс многократно, смесь газов можно в принципе разделить полностью. По удивительной прихоти природы среди примерно 200 соединений урана есть только одно газообразное — шестифтористый уран UF6 — ядовитый газ, который уже при 56°C конденсируется в виде игольчатых кристаллов. Если этот газ пропустить через специальную пористую перегородку, то за ней урана-235 станет на 0,14 % больше, чем до нее, а поставив несколько тысяч таких перегородок, можно в конце концов отделить уран-235 от урана-238. Все это станет возможным, однако, только пять лет спустя, а летом 1939 г. ученые были озабочены другим: как осуществить незатухающую ядерную реакцию в природном уране?
Прежде всего, вместо воды следовало выбрать другой замедлитель. Выбор оказался небогатым: либо углерод (сечение захвата им нейтронов σ = 0,0034 барн), либо тяжелая вода D2O, то есть вода, в которой водород замещен дейтерием (сечение захвата σ = 0,0012 барн). Легко видеть, что тяжелая вода предпочтительнее. Однако ее очень трудно добывать: в литре обычной воды содержится всего 0,15 г тяжелой. К тому же в 1939 г. это умели делать только в одном месте в мире — в Норвегии, на небольшом заводе в Веморке. Из двух возможностей Жолио-Кюри и Гейзенберг независимо друг от друга выбрали тяжелую воду, в то время как Ферми, Сцилард и Курчатов решили попытать счастья с графитом.
Условие, при котором цепная ядерная реакция возможна, принято записывать с помощью простой и знаменитой «формулы четырех сомножителей»:
Коэффициент размножения — это число вторичных нейтронов, возникающих в реакторе бесконечных размеров на каждый первичный нейтрон деления. Ясно, что расходящаяся цепная реакция возможна лишь в том случае, если k∞> 1, то есть в каждом последующем «поколении» нейтронов будет больше, чем в предыдущем.
Коэффициент η — это число вторичных тепловых нейтронов в естественном уране, которое отличается от среднего числа нейтронов деления в чистом уране-235. Дело в том, что при захвате медленного нейтрона ядрами урана-235 они делятся только в 84 % случаев, а в остальных 16 % испускают γ-квант и превращаются в ядра изотопа урана-236. Кроме того, даже тепловые нейтроны захватываются изотопом урана-238, хотя и много слабее, чем резонансные. Но в естественной смеси изотопов урана-238 в 149 раз больше, чем урана-235, поэтому для такой смеси коэффициент η = 1,34 — много меньше исходного коэффициента размножения ν = 2,42, хотя все еще и превышает единицу.
Коэффициент ε учитывает то обстоятельство, что быстрые нейтроны деления, пока их энергия больше чем 1,5 МэВ, способны также делить и ядра урана-238, то есть реально увеличивают число вторичных нейтронов. Для уран-графитовых реакторов ε = 1,03.
Много хлопот доставил коэффициент φ — вероятность избежать резонансного захвата нейтронов в уране-238 в процессе их замедления. Если бы все нейтроны деления достигали тепловых энергий без потерь в уране-238, то коэффициент φ был бы равен единице. Как всякий идеал, значение φ=1 недостижимо, но можно пытаться к нему приблизиться. Способ увеличить коэффициент φ придумали почти сразу же, летом 1939 г.: во Франции, США и Германии независимо возникла идея гетерогенного реактора. Суть идеи проста и состоит в следующем: вместо того чтобы перемешивать равномерно уран и замедлитель, нужно разместить блоки урана в пространстве на некотором расстоянии друг от друга, наподобие атомов в кристаллической решетке, а затем уже заполнить этот объем замедлителем. В этом случае нейтроны деления, вылетая из блоков урана с энергией около 2 МэВ, большую часть пути будут проходить в замедлителе и к тому времени, когда они достигнут другого блока урана, уже минуют опасную резонансную область энергий. К тому же нейтроны деления, образовавшиеся в блоках урана с большой начальной энергией 2 МэВ, проходят его толщу, не успевая замедлиться до резонансных энергий, что еще более повышает эффективность такого гетерогенного реактора. (В работе Исая Исидоровича Гуревича и Исаака Яковлевича Померанчука, которая стала важным элементом советской урановой программы, это явление названо «блок-эффектом».) Должным образом подбирая расстояния между блоками урана, на этом пути достигли значения φ = 0,93 (для гомогенного реактора φ=0,65).
Коэффициент ϑ в «формуле четырех сомножителей» — это вероятность избежать захвата нейтрона в замедлителе и всевозможных примесях. Для чистого графита удалось повысить этот коэффициент до значения ϑ=0,84. Очень важно, чтобы графит был чистым: малейшая примесь, например, бора — всего 3 — 4 атома на миллион атомов углерода — делает его непригодным для замедлителя. (Сечение захвата нейтронов ядрами бора огромно: σзахв = 755 барн, поэтому только при концентрации примеси примерно 10-6 захватом нейтронов в боре можно пренебречь
по сравнению с захватом в углероде, для которого σзахв =0,0034 барн.)
Таким образом, для уран-графитового гетерогенного реактора на естественном уране произведение четырех сомножителей
то есть цепная ядерная реакция в бесконечно большом реакторе возможна.
В реальном реакторе конечных размеров часть нейтронов теряется, уходя из объема реактора наружу через его поверхность, поэтому действительный коэффициент размножения нейтронов k меньше k∞ и
k=k∞ρ,
где коэффициент ρ зависит от размеров и формы реактора, но всегда меньше единицы. Очевидно, существуют какие-то критические размеры реактора, при которых произведение k = k∞∙ρ =1. Оставалось выяснить, насколько велики эти размеры.
В декабре