Kniga-Online.club
» » » » Пекка Теерикор - Эволюция Вселенной и происхождение жизни

Пекка Теерикор - Эволюция Вселенной и происхождение жизни

Читать бесплатно Пекка Теерикор - Эволюция Вселенной и происхождение жизни. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Но это не было выдумкой: настало время исследовать небесные радиоволны. Во время Второй мировой войны антенные технологии сделали огромный шаг вперед, и после войны огромное количество антенн осталось без работы. Астрономы воспользовались этой возможностью, и в конце 1940-х годов родилась радиоастрономия. Кроме Янского и Рёбера нужно отметить еще Мартина Райла (19181984) из Кембриджского университета, который стал одним из первых исследователей в этой новой области науки и получил Нобелевскую премию. Астроном Ян Оорт, о котором мы уже говорили в связи с его исследованиями Галактики, также очень рано понял значение радиоволн как нового инструмента для исследования Вселенной.

Выяснилось, что интенсивность радиоизлучения примерно одинакова на различных частотах — в этом случае говорят о непрерывном спектре. Рёбер считал, что источником излучения служат электроны, которые в ионизованной среде, проходя вблизи атомных ядер, движутся по искривленной траектории. Но наблюдения не подтвердили эту идею: такое «тормозное излучение» действительно имеет непрерывный спектр, но его характерная форма и точка обрезания не соответствуют радионаблюдениям. Райл и Оорт считали, что радиоволны приходят от звезд, которые отличаются от Солнца тем, что по какой-то причине обладают очень мощным радиоизлучением; но и они ошиблись.

Загадка радиошума начала проясняться, когда Карл Кипенхойер (1910–1975) в 1950 году предположил связь между космическими лучами и радиошумами. В том же году Ханнес Альвен (Швеция) и Николаи Херлофсон (Норвегия) предположили, что причиной шума является распространение космических лучей со скоростью, близкой к скорости света. Такое синхротронное излучение наблюдается и в ускорителях частиц, где магнитные поля заставляют заряженные частицы двигаться по кругу. В космосе высокоэнергичные электроны вращаются в магнитных полях, испуская радиоизлучение; в принципе, то же самое происходит при колебании электронов в антенне радиопередатчика (рис. 26.3). Виталий Лазаревич Гинзбург (1916–2009, Нобелевская премия 2003 года) и Иосиф Самуилович Шкловский (1916–1986) были среди тех ученых, кто развил теорию синхротронного излучения.

Рис. 26.3. Электроны, обращаясь вокруг магнитных силовых линий, испускают синхротронное излучение.

Спектральные линии радиоизлучения.

В 1944 году молодой голландский студент Хенк ван де Хюлст (1918–2000) по совету Оорта занялся исследованием того, могут ли быть спектральные линии в радиоизлучении. Спектральные линии доказали свое значение в оптической астрономии, где их используют для изучения движения звезд и галактик, а также и многих других свойств этих объектов. Радиоизлучение со спектральными линиями открыло бы новое окно во Вселенную.

Ван де Хюлст обнаружил, что переход атома водорода между его двумя энергетическими уровнями может привести к излучению на длине волны около 21 см, что попадает в область радиоволн. При этом электрон не прыгает с одной орбиты на другую, а лишь чуть-чуть меняет свое положение. Как уже было сказано, у электрона есть свойство, называемое спином, которое можно представить себе как вращение вокруг оси. Ядро атома водорода — протон — тоже имеет свой спин. Спины протона и электрона могут быть параллельны или антипараллельны; в первом случае атом водорода находится в возбужденном состоянии. Когда из возбужденного состояния атом переходит в свое основное состояние, он излучает фотон, энергия которого равна энергии возбуждения. Поскольку эта энергия очень мала, соответствующая частота излучения низка (1420,4 МГц), а длина волны велика и составляет, если точно, 21,1 см (рис. 26, 4).

Рис. 26.4. Испускание излучения с длиной волны 21 см при переходе атома водорода из возбужденного состояния в основное.

Водород — самый распространенный элемент Вселенной, поэтому нет недостатка в потенциальных излучателях на радиоволне 21 см. Атомы водорода могут переходить в возбужденное состояние при взаимных столкновениях. Примерно через и млн лет это возбуждение «разряжается», и рождается квант с длиной волны 21 см. Несмотря на то что каждый атом излучает так редко, в Галактике настолько много атомов водорода, что вместе они могли бы дать мощный сигнал. Действительно, в 1951 году сигнал был обнаружен в наблюдениях, проведенных в США и Нидерландах. Источником излучения оказались холодные межзвездные облака, на существование которых раннее указывали лишь косвенные данные.

Если оптическая астрономия позволила выяснить распределение звезд в Галактике, то радиоастрономия дала возможность узнать, как распределен в пространстве другой ее важнейший компонент — межзвездный газ. Уже к 1958 году была составлена радиокарта Галактики с четкими признаками ее спиральной структуры. Эту работу проделали Ян Оорт, Фрэнк Керр (1918–2000) и Гарт Вестерхаут. В 1951 году Керр приступил к программе наблюдений южного неба в линии 21 см и начал составлять карту Магеллановых Облаков. Так впервые была зафиксирована радиолиния в спектре другой галактики.

Водород не единственный излучатель спектральных линий в радиодиапазоне. Молекула ОН, состоящая из одного атома водорода и одного атома кислорода, была обнаружена в космосе в 1963 году по ее спектральной линии 18 см. Затем в 1968 году нашли излучение молекул воды и аммиака, после чего поток новых открытий молекул в космосе уже не прекращался. В 1970-е годы по спектральным линиям ежегодно обнаруживали около пяти новых молекул, так что сейчас их число около 150. Тем временем накапливались данные о межзвездных облаках разного типа. Наиболее обильными местами обнаружения молекул в космосе являются молекулярные облака. В них при относительно высокой плотности газа и происходят сложные химические реакции. Молекулярное облако может быть весьма массивным: массивнее чем 100 000 звезд.

Радиогалактики обнаружены.

А что представляют собой радиоисточники за пределами нашей Галактики? В Кембриджском университете и в других местах, особенно в Австралии, составляли списки новых радиоисточников. В Первом Кембриджском каталоге, появившемся в 1950 году, Райл и его коллеги собрали информацию о 50 радиоисточниках. Четыре года спустя появился Второй каталог с 1936 источниками, а Третий каталог 1959 года содержал уже 471 источник. До сих пор самые яркие радиоисточники называют по их номеру в Третьем Кембриджском каталоге (3С). Например, ярчайший радиоисточник в созвездии Лебедь известен под именем 3С 405. Для южного неба такую же работу проделала радиоастрономическая обсерватория в Парксе (Австралия). Кроме того, ярчайшие источники часто называют по имени созвездия, в котором они располагаются: например, 3С 405 имеет второе имя — Лебедь А.

Но составление каталогов и наименование радиоисточников еще не дают нам возможности судить об их природе. С самого начала перед исследователями встали две основные проблемы: первая — низкая точность определения положения источника на небе; вторая — отсутствие у типичных источников спектральных линий, которые можно было бы использовать для определения красного смещения. Нетрудно сфотографировать небо в направлении радиоисточника, но на снимке будет так много разных объектов, близких и далеких, что обычно невозможно определить, который из них является источником радиоизлучения. Поэтому отождествление радиоисточников с оптическими объектами стало особой проблемой, потребовавшей больших усилий для своего решения.

Первый радиоисточник отождествили в Сиднее (Австралия) Джон Болтон с коллегами: радиоисточник Телец А совпал с Крабовидной туманностью — остатком сверхновой 1054 года. Дева А и Кентавр А оказались связаны с довольно близкими к нам галактиками (М87 и NGC 5128). Они стали первыми примерами радиогалактик, мощно излучающих в радиодиапазоне. А затем сюрприз преподнес Лебедь А.

На радиокарте Рёбера источник Лебедь А был пятном настолько большого размера, что любой из тысяч расположенных в этой области неба объектов мог оказаться источником радиоизлучения. Отождествить Лебедь А не удавалось до 1951 года, когда наконец Грехем Смит из Кембриджского университета определил его положение с точностью в 1 минуту дуги (с такой точность Тихо Браге наблюдал невооруженным глазом!). Смит послал координаты Вальтеру Бааде, работавшему в Паломарской обсерватории и имевшему регулярный доступ к новому, крупнейшему тогда в мире, 5-метровому телескопу. Бааде решил в ближайшую же ночь сфотографировать область Лебедя А заодно со своими основными наблюдениями. На следующий день он проявил фотопластинку и начал ее просматривать:

«Как только я взглянул на пластинку, то сразу понял, что там есть что-то необычное. По всему фото были видны галактики общим числом около 200, и самая яркая из них находилась в центре картинки. У нее были заметны приливные возмущения, следы гравитационного притяжения двух ядер. Раньше я не видел ничего подобного. Это настолько заняло все мои мысли, что, возвращаясь на автомобиле вечером домой, я вынужден был остановиться, чтобы подумать».

Перейти на страницу:

Пекка Теерикор читать все книги автора по порядку

Пекка Теерикор - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Эволюция Вселенной и происхождение жизни отзывы

Отзывы читателей о книге Эволюция Вселенной и происхождение жизни, автор: Пекка Теерикор. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*