Kniga-Online.club
» » » » Шинтан Яу - Теория струн и скрытые измерения Вселенной

Шинтан Яу - Теория струн и скрытые измерения Вселенной

Читать бесплатно Шинтан Яу - Теория струн и скрытые измерения Вселенной. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Рис. 1.6. Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее. Если мы внимательно посмотрим на четырехмерное пространство-время, представленное на рисунке в виде линии, то увидим, что на самом деле оно скрывает в себе шесть дополнительных измерений, скрученных в замысловатое, хотя и крошечное геометрическое пространство, известное как многообразие Калаби-Яу. (Более подробно эти пространства будут обсуждаться далее, поскольку они являются основной темой книги.) Какой бы участок линии вы ни вырезали, вы все равно найдете в нем скрытое многообразие Калаби-Яу, и все многообразия, полученные таким способом, будут идентичными

Именно это и пытаются сделать создатели теории струн — захватывающей, хотя и до сих пор не нашедшей экспериментального подтверждения попытки объединить различные взаимодействия путем замены точечных объектов физики элементарных частиц на протяженные (хотя и крошечные) физические объекты, называемые струнами. Как и теория Калуцы-Клейна, теория струн предполагает, что наличие дополнительных измерений помимо тех трех (или четырех), с которыми мы ежедневно сталкиваемся, является необходимым условием для объединения всех сил природы в одну. Большинство вариантов теории струн предполагают существование десяти или одиннадцати (с учетом времени) измерений, необходимых для осуществления Великого объединения.

Но дело не только в том, чтобы ввести несколько дополнительных измерений и надеяться на лучшее. Чтобы теория получила практическое применение, этим измерениям следует поставить в соответствие определенные размеры и формы (вопрос о том, какие именно размеры и формы, — пока остается открытым). Иными словами, геометрия играет в теории струн особую роль, и многие ее сторонники подтвердят, что именно геометрия дополнительных измерений во многом определяет вид той Вселенной, в которой мы живем, обусловливая свойства всех наблюдаемых (а также по тем или иным причинам ненаблюдаемых) в природе физических сил и элементарных частиц.

Начиная с шестой главы мы займемся теорией струн более подробно. Но прежде чем углубиться в сложную математику, лежащую в ее основе, следует более подробно изучить основы геометрии. (Мой, хотя и предвзятый, опыт говорит, что такая методика является удачной.) Поэтому мы отступим на несколько шагов назад от XX и XXI столетий и заглянем в историю этой почтенной науки, чтобы понять, какое место она занимает в существующем порядке вещей.

И если говорить о том месте, которое она занимает, то лично для меня геометрия всегда была чем-то вроде скоростной полосы на автобане истины — наиболее коротким путем из точки, в которой мы находимся, в точку, в которой мы хотим оказаться. Это неудивительно, если принять во внимание, что большая часть геометрических исследований посвящена как раз указанной проблеме — нахождению расстояния между двумя точками. Поэтому запаситесь терпением, если путь от математики Древней Греции к сложнейшим построениям теории струн покажется вам несколько запутанным и извилистым. Порой самый короткий путь — вовсе не самый прямой, в чем мы скоро и убедимся.

Вторая глава

Место геометрии в мироздании

На протяжении почти двух с половиной тысяч лет в европейской, точнее, в западной традиции изучение геометрии было обязательным, поскольку сложно себе представить более изящную, безупречную, образцовую истину, доступную нам вне Божественного откровения. Изучение геометрии в некотором роде вскрывает самую сущность физического мира.

Пирс Бёрсилл-Холл. «Почему мы изучаем геометрию?»

Так что же такое геометрия? Многие полагают, что геометрия — это только предмет, который они изучали в средней школе, — совокупность технических приемов, необходимых для измерения углов между прямыми, вычисления площадей треугольников, кругов и прямоугольников и, возможно, для установления некоторой меры эквивалентности между различными геометрическими объектами. Даже если пользоваться столь ограниченным определением, не возникает сомнений, что геометрия является весьма полезным инструментом — к примеру, для архитекторов, ежедневно использующих ее в своей работе. Да, несомненно, геометрия включает в себя все вышеперечисленное, но также и многое другое, поскольку она имеет отношение к архитектуре в самом широком смысле этого слова, начиная от мельчайших масштабов и заканчивая огромнейшими. А для некоторых людей вроде меня, одержимых идеей определения размера, формы, кривизны и структуры космического пространства, геометрия — основной инструмент.

Слово геометрия, произошедшее от слов гео (земля) и метрео (измеряю) изначально значило «измерение земли». Но сейчас это слово используется в гораздо более общем значении — «измерение пространства», хотя пространство само по себе и не является достаточно строго определяемым понятием. Как сказал однажды Георг Фридрих Бернхард Риман: «Геометрия предполагает заданными заранее как понятие пространства, так и первые основные понятия, которые нужны для выполнения пространственных построений, давая таким образом лишь номинальные определения понятий».[14]

Как бы странно это ни прозвучало, но мы предпочитаем сохранять понятие пространства весьма расплывчатым по той причине, что оно подразумевает многое, для чего мы не имеем других обозначений. Таким образом, эта неопределенность в каком-то плане удобна. К примеру, когда мы рассматриваем вопрос о размерности пространства или размышляем о его форме как единого целого, мы могли бы отнести эти рассуждения и ко всей Вселенной. В более узком значении понятие пространства может относиться как к весьма простой геометрической конструкции, такой как точка, линия, плоскость, сфера или тор — все те типы геометрических фигур, которые способен нарисовать студент, так и к гораздо более сложным и неизмеримо более трудноизображаемым объектам.

Представим, к примеру, что у нас имеется некая совокупность точек, расположенных совершенно случайным образом, и что при этом абсолютно невозможно ввести определение расстояния между ними. С точки зрения математики это пространство не будет иметь геометрии; это будет просто случайный набор точек. Однако стоит лишь ввести некую измерительную функцию, дающую возможность рассчитывать расстояния между любыми двумя точками, называемую метрикой, как пространство неожиданно приобретает упорядоченность. Теперь оно характеризуется определенной геометрией. Иными словами, метрика предоставляет всю информацию, необходимую для того, чтобы сделать вывод о форме пространства, на котором она задана. Вооружившись способом измерять форму пространства, можно с большой точностью определить, является ли пространство плоским, и установить степень его отклонения от плоскости, или, иными словами, вычислить кривизну пространства, что я лично нахожу наиболее интересным.

Таким образом, геометрия представляет собой нечто большее, чем просто набор методов для измерения расстояний — что, разумеется, не принижает измерительную функцию геометрии, которой я также восхищаюсь, — геометрия является одним из основных доступных нам способов исследования Вселенной. Физика и космология уже по одному своему названию играют главные роли в понимании Вселенной. Роль геометрии, хотя и менее заметна, но так же важна. Я даже рискну сказать, что геометрия не только заслуживает места за одним столом с физикой и космологией, но во многих отношениях она и является этим столом.

Это действительно так, поскольку вся вселенская драма — сложнейший танец частиц, атомов, звезд и других объектов, постоянно изменяющихся, движущихся, взаимодействующих, — разыгрывается на подмостках, называемых «пространством», и ее никогда не понять без понимания существенных особенностей самого пространства. Пространство представляет собой нечто гораздо большее, чем просто театральный задник, по сути оно обусловливает важнейшие физические свойства тех объектов, которые в нем находятся. Действительно, как принято считать в настоящее время, материя или частицы, покоящиеся или движущиеся в пространстве, на самом деле являются частями этого пространства, или, точнее, пространственно-временного континуума. Геометрия в свою очередь может накладывать ограничения на поведение пространственно-временного континуума и физических систем в целом — ограничения, которые можно обнаружить исходя исключительно из принципов математики и логики.

Рассмотрим, например, климат Земли. Хотя это и не очевидно, геометрия оказывает существенное влияние на климат — в этом случае основную роль играет форма нашей планеты. Если бы мы жили не на поверхности сферы, а на поверхности тора или бублика, то наша жизнь — так же, как и климат нашей планеты, — была бы совершенно другой.

Перейти на страницу:

Шинтан Яу читать все книги автора по порядку

Шинтан Яу - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Теория струн и скрытые измерения Вселенной отзывы

Отзывы читателей о книге Теория струн и скрытые измерения Вселенной, автор: Шинтан Яу. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*