Под знаком кванта. - Леонид Иванович Пономарёв
Учитывая, что заряд протона е = 4,8∙10 10 ед. СГСЭ, а среднее расстояние между протонами в ядре гелия 2∙10-13
Это очень много, но все же меньше, чем энергия ядерного притяжения. Теперь хорошо известно, что ядро любого атома построено из нуклонов, то есть из протонов и нейтронов, массы которых немного различаются между собой:
mр= 1,007276 а.е.м., mn = 1,008665 а.е.м.
При объединении двух протонов с двумя нейтронами возникает ядро гелия (α-частица) с массой mα=4,001506 а. е.м., то есть дефект массы ядра гелия
Δm = 2mр + 2mn — mα=0,030377 а.е.м.,
а его энергия связи
Е =Δmс2 = 0,030377∙931,5 МэВ = 28,3 МэВ
в 40 раз больше, чем энергия электрического отталкивания протонов в ядре.
Можно ввести, наконец, некоторую среднюю характеристику прочности ядра, которую называют энергией связи нуклона в ядре E1 и которая равна полной энергии связи, деленной на число нуклонов в ядре. Например, для гелия E1=28,3 МэВ/4 = 7,1 МэВ. Для более тяжелых ядер энергия связи нуклона вначале возрастает (то есть ядра становятся прочнее), достигает максимума E1=8,5 МэВ примерно в середине таблицы Менделеева для элементов, расположенных вблизи олова, и затем вновь монотонно уменьшается до значения E1=7,6 МэВ для ядра урана. (Для сравнения напомним, что энергия химической связи между двумя атомами водорода в молекуле равна 4,5 эВ, то есть более чем в миллион раз меньше, а для испарения молекулы воды, то есть для преодоления притяжения между молекулами, достаточно затратить всего около 0,1 эВ.)
При чтении этой главы могло сложиться впечатление, что ядерная физика — очень простая наука. В самом деле, для выяснения источников энергии радиоактивного распада и понимания причины стабильности большинства ядер достаточно знать формулу Эйнштейна Е = тс2, значения масс изотопов и четыре правила арифметики. Однако эти простые вычисления не помогают ответить на вопрос: почему распадаются ядра радиоактивных элементов? Ведь для того чтобы вырвать из ядра урана хотя бы один нуклон, надо затратить энергию ΔE1=7,6 МэВ, а α-частица состоит из четырех нуклонов! Так что же заставляет α-частицы покидать ядра урана, радия и других радиоэлементов, и притом с энергией в несколько мегаэлектронвольт?
Ответ на этот вопрос будет получен только в 1928 г. — через 3 года после создания квантовой механики и через 32 года после открытия радиоактивности.
ВОКРУГ КВАНТА
Уран
В 1789 г., в год Великой французской революции, немецкий химик и натурфилософ Мартин Генрих Клапрот (1743—1817) впервые выделил окись урана UO2. Лишь полстолетия спустя, в 1841 г., французский ученый Эжен Пелиго (1811 — 1890) выделил уран в чистом виде. Оказалось, что это — тяжелый металл серо-стального цвета с плотностью 19,04 г/см3 и точкой плавления 1132 °C. По виду он похож на серебро, по тяжести — на платину, по химическим свойствам — на вольфрам. Вначале ему приписывали атомную массу 120, но в 1874 г. Д. И. Менделеев исправил ее на 240. Сейчас хорошо известно, что природный уран состоит из смеси двух изотопов: на 99,28 % из урана-238 и на 0,72 % — из урана-235.
Урана в земле довольно много: в среднем в каждом грамме земной породы содержится 3·10-6 г урана, то есть больше, чем свинца, серебра и ртути. В граните его еще больше: 25 г на каждую тонну гранита. Известно около 200 соединений и минералов урана, среди которых особое место занимает UF6 — бесцветные кристаллы, которые уже при 56,5 °C превращаются в ядовитый газ. Это — единственное известное газообразное соединение урана, и не будь его, разделить изотопы урана было бы намного сложнее.
Периоды полураспада ядер урана чрезвычайно велики: 7,1∙103 лет для 23592U и 4,5∙109 лет для 23892U. Кроме этих двух изотопов известны еще 12 изотопов урана, самый короткоживущий из которых 22792U имеет период полураспада 1,3 мин.
Земля и радий
Было давно известно, что при спуске в шахту температура Земли повышается примерно на 3°C на каждые 100 м. Этот факт объясняли вполне естественно: когда-то Земля была раскаленным шаром, с тех пор постепенно остывает и поэтому внутри она горячее, чем снаружи. Однако, когда Уильям Кельвин в середине прошлого века вычислил время остывания, оно оказалось необычайно малым: меньше 100 млн. лет.
Этот результат немало обескуражил Чарлза Дарвина, поскольку для эволюции видов нужны громадные промежутки времени, и притом уже на остывшей Земле. (Он даже сделал соответствующие оговорки во втором издании своего знаменитого труда «Происхождение видов».) Геологи также решительно воспротивились: для объяснения наблюдаемых фактов им необходимо было по крайней мере в десять раз большее время существования остывшей Земли. Спор этот между физиками — с одной стороны, и биологами и геологами — с другой, длился довольно долго и прекратился по молчаливому обоюдному согласию ввиду его очевидной бесплодности.
Открытие радиоактивности позволило возвратиться к этой проблеме на новой основе. Было сразу же замечено, что если в каждом грамме вещества земного шара содержится хотя бы 10-13 г радия, то этого количества вполне достаточно, чтобы поддерживать внутреннюю температуру Земли на постоянном уровне за счет тепла радиоактивного распада. Как показали дальнейшие анализы, в каждом грамме земных недр содержится 10-6 г урана и, следовательно, 3∙10-13 г радия, то есть даже больше, чем это необходимо. В связи с этим геологи склонны сейчас считать, что Земля вовсе не остывает, а, наоборот, разогревается изнутри благодаря энергии распада радиоактивных веществ. (Одним из первых в 1910 г. к этой мысли пришел русский ученый Алексей Петрович Соколов (1854—1928).) Общий поток теплоты от распада радиоактивных элементов на поверхности Земли равен 3·1013 Вт, то есть примерно в три раза превышает мощность всей энергетики мира.
Что же касается действительного возраста Земли, то его можно сразу оценить, определив относительную концентрацию свинца в урановой руде. В самых древних урановых