Kniga-Online.club
» » » » РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Читать бесплатно РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

пунктирная линия проходит ниже прямой линии, когда портфель находится на уровне или выше своей первоначальной стоимости (100). Величина, на которую пунктирная линия ниже прямой линии, отражает стоимость страхования портфе­ля. Когда стоимость портфеля уменьшается, страхование портфеля ограничивает падение на некотором уровне (в данном случае 100) за вычетом расходов на осу­ществление стратегии.

Страхование портфеля соответствует покупке пут-опциона по портфелю. Допустим, фонд, которым вы управляете, состоит только из 1 акции стоимо­стью 100 долларов. Покупка пут-опциона на эту акцию с ценой исполнения 100 долларов при цене опциона 10 долларов соответствует пунктирной ли­нии на рисунке 8-2. Худшее, что может произойти в данном случае с портфе­лем (1 акция и 1 пут-опцион), состоит в том, что по истечении опциона вы продадите акцию за 100 долларов, но потеряете 10 долларов (стоимость этого опциона). Таким образом, минимальная стоимость портфеля будет 90 долла­ров, независимо от того, насколько упадет базовая акция. При росте вы по­несете некоторые убытки из-за того, что стоимость портфеля уменьшится на стоимость опциона.

Если сопоставить рисунок 8-2 с фундаментальным уравнением торговли и оце­ночным TWR из уравнения (1.19в), становится ясно, что в асимптотическом смыс­ле застрахованный портфель лучше незастрахованного. Другими словами, если вы умны настолько, насколько глупа ваша худшая ошибка, то, застраховав портфель, вы ограничите последствия такой ошибки.

Обратите внимание, что длинная позиция по колл-опциону дает тот же ре­зультат, что и длинная позиция по базовому инструменту совместно с длинной позицией по пут-опциону с той же ценой исполнения и датой истечения, что и у колл-опциона. Когда мы говорим о том же результате, имеются в виду эквивален­тные соотношения риск/выигрыш разных портфелей. Таким образом, пунктир­ная линия на рисунке 8-2 может также представлять длинную позицию по колл-опциону с ценой исполнения 100.

Посмотрим, как работает динамическое хеджирование при страховании портфеля. Допустим, вы, как управляющий фондом, приобретаете 100 акций по цене 100 долларов за акцию. Давайте смоделируем колл-опцион по этой ак­ции. Сначала определим минимальный ценовой уровень рассматриваемой ак­ции. Например, установим его на 100. Далее определим дату истечения этого гипотетического опциона. Пусть дата истечения будет последним днем теку­щего квартала.

Теперь рассчитаем дельту колл-опциона при цене исполнения 100 и выбран­ной дате истечения. Вы можете использовать уравнение (5.05) для поиска дельты фондового колл-опциона (можно использовать дельту для любой модели опцио­нов, мы же будем использовать модель фондовых опционов Блэка-Шоулса). До­пустим, дельта равна 0,5, т. е. в данный актив следует инвестировать 50% счета. Таким образом, вам следует купить только 50 акций, а не 100 акций, которые вы

бы купили, если бы не страховали портфель. Если цена акции будет расти, то же будет происходить с дельтой и количеством акций. Верхняя граница дельты равна единице, что соответствует инвестированию 100% средств. Если цена акции будет понижаться, то же будет происходить с дельтой и размером позиции по акциям. Нижняя граница дельты равна 0 (при этом дельта пут-опциона равна -1), и в этой точке следует полностью закрыть позицию по акциям.

Рисунок 8-2 Страхование портфеля

На практике портфельные менеджеры используют неагрессивные методы ди­намического хеджирования, что предполагает отсутствие торговли самими ценными бумагами портфеля. Стоимость портфеля зависит от текущей дельты и модели и регулируется с помощью фьючерсов, а иногда пут-опционов. Плю­сом использования фьючерсов является низкая стоимость трансакций. Корот­кая продажа фьючерсов против портфеля эквивалентна продаже части порт­феля. При падении портфеля продается больше фьючерсных контрактов, ког­да же стоимость портфеля растет, эти короткие позиции закрываются. Потери по портфелю, когда приходится закрывать короткие фьючерсные позиции при росте цен на акции, являются издержками по страхованию портфеля и эквива­лентны стоимости гипотетических смоделированных опционов. Преимуще­ство динамического хеджирования состоит в том, что оно позволяет с самого начала точно рассчитать издержки. Менеджерам, применяющим такую стра­тегию, это позволяет сохранить весь портфель ценных бумаг, в то время как размещение активов регулируется посредством фьючерсов и/или опционов. Предложенный неагрессивный метод, основанный на использовании фьючер­сов и/или опционов, позволяет разделить размещение активов и активное уп­равление портфелем. При страховании вы должны постоянно регулировать портфель с учетом текущей дельты, т. е. с определенной периодичностью, например, каждый день вы должны вводить в модель ценообразования опционов текущую сто­имость портфеля, время до даты истечения, уровень процентной ставки и волатильность портфеля для определения дельты моделируемого пут-опциона. Если к дельте, которая может принимать значения 0 и -1 прибавить единицу, то вы получите соответствующую дельту колл-опциона, которая будет коэф­фициентом хеджирования, т.е. долей вашего счета, которую следует инвести­ровать в фонд. Допустим, коэффициент хеджирования в настоящий момент составляет 0,46. Размер фонда, которым вы управляете, эквивалентен 50 фьючерсным контрактам S&P. Так как вы хотите инвестировать только 46% средств, вам надо изъять ос­тальные 54%, т.е. 27 контрактов. Поэтому при текущей стоимости фонда, при данных уровнях процентной ставки и волатильности фонд должен иметь корот­кие позиции по 27 контрактам S&P одновременно с длинной позицией по акци­ям. Так как необходимо постоянно перерассчитывать дельту и регулировать порт­фель, метод называется стратегией динамического хеджирования. Одна из проблем, связанная с использованием фьючерсов, состоит в том, что рынок фьючерсов в точности не следует за рынком спот. Кроме того, портфель. против которого вы продаете фьючерсы, может в точности не следовать за индек­сом рынка спот, лежащего в основе рынка фьючерсов. Подобные ошибки могут добавляться к расходам по страхованию портфеля. Более того, когда ваш модели­руемый опцион подходит очень близко к дате истечения, а стоимость портфеля приближается к цене исполнения, гамма моделируемого опциона астрономичес­ки возрастает. Гамма — это мгновенная скорость изменения дельты, т.е. коэффи­циента хеджирования. Другими словами, гамма является дельтой дельты. Если дельта изменяется очень быстро (т. е. моделируемый опцион имеет высокую гам­му), страхование портфеля становится крайне обременительным. Существует множество путей обхода этой проблемы, и некоторые из них довольно сложны. Один из самых простых способов заключается в том, чтобы совместно использо­вать фьючерсы и опционы для изменения как дельты, так и гаммы моделируемого опциона. Большое значение гаммы, как правило, создает проблемы только тогда, когда подходит дата истечения, а стоимость портфеля и цена исполнения модели­руемого опциона сближаются. Существует интересная связь между оптимальным f и страхованием порт­феля. Можно сказать, что при открытии позиции вы инвестируете f процен­тов средств. Рассмотрим азартную игру, где оптимальное f=0,5, наиболь­ший проигрыш равен -1 и вы располагаете 10 000 долларов. В таком случае следует ставить 1 доллар на каждые 2 доллара на счете, так как, разделив -1

(наибольший проигрыш) на -0,5 (отрицательное оптимальное f), мы полу­чим 2. Разделив 10000 долларов на 2, мы получим 5000 долларов, поэтому следует ставить 5000 долларов, что соответствует доле f, т.е. 50% ваших де­нежных средств. Если умножить 10 000 долларов на f= 0,5, мы получим тот же результат, 5000 долларов, т.е. вам следует задействовать f процентов имею­щихся денежных средств. Аналогично, если ваш наибольший проигрыш равен 250 долларам, а все ос­тальное остается без изменений, то следует ставить 1 доллар на каждые 500 долларов вашего счета (так как -$250 / -0,5 = $500). Разделив 10 000 долларов на 500 долларов, мы найдем, что ставка равна 20 долларам. Так как максималь­ный проигрыш по одной ставке составляет 250 долларов, вы, таким образом, рискуете долей счета f, т.е. 50%, или 5000 долларов ($250 * 20). Мы можем ска­зать, что f равно доле вашего счета, которая подвержена риску, или f равно ко­эффициенту хеджирования. Так как f применимо только к активной части портфеля, при стратегии динамического дробного f коэффициент хеджирова­ния портфеля равен:

(8.04а) H=f*A/E,

где Н = коэффициент хеджирования портфеля;

f= оптимальное Г(от 0 до 1);

А = активная часть средств счета;

Е = общий баланс счета.

Уравнение (8.04а) дает нам коэффициент хеджирования для портфеля при страте­гии динамического дробного f. Страхование портфеля также работает при стати­ческом дробном f, только коэффициент А/Е становится равным единице, а опти­мальное f умножается на соответствующий коэффициент. Таким образом, при стратегии статического дробного f коэффициент хеджирования равен:

Перейти на страницу:

РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы

Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*