Kniga-Online.club

Стивен Маран - Астрономия для "чайников"

Читать бесплатно Стивен Маран - Астрономия для "чайников". Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

 Измерение постоянной Хаббла и возраста Вселенной

Давным давно, около 12–14 миллиардов лет назад, Вселенной в том виде, как мы ее знаем, не существовало. Материи не было — ни одного атома. Света тоже не было — ни одного фотона. Пространство еще не было создано, и космические часы еще не начали тикать.

А затем, вероятно в одно мгновение, Вселенная приняла форму крошечной плотной частицы, заполненной светом. И за крошечную долю секунды появилась на свет вся материя и энергия Космоса. По размерам намного меньше атома, юная Вселенная была обжигающе горячей, — это был первичный огненный шар, который начал стремительно расти и остывать с бешеной скоростью.

Картина рождения Вселенной носит название теории Большого Взрыва. Причем Большой Взрыв не был похож на фейерверк, взрывающийся в существующем пространстве; это было быстрое расширение самого пространства.

В течение первой 1036-й доли секунды Вселенная увеличилась более чем в 1036 раз. Из однородной смеси субатомных частиц и излучения впоследствии возникли галактики, скопления и сверхскопления галактик, которые существуют во Вселенной сегодня. Просто уму непостижимо, что самые крупные структуры во Вселенной, группы галактик, протянувшихся по небу на сотни миллионов световых лет, начинались как колебания субатомных частиц высоких энергий в зарождающемся космосе. Но именно так сегодня ученые представляют себе процесс формирования Вселенной.

Доказательства теории Большого Взрыва

Почему ученые считают, что Вселенная началась со взрыва?

Астрономы приводят три очень разные последовательности рассуждений, которые создают прочную основу для данной теории. Давайте рассмотрим их подробнее.

 Открытие явления расширения Вселенной. Вероятно, самое убедительное доказательство теории Большого Взрыва вытекает из замечательного открытия, сделанного американским астрономом Эдвином Хабблом в 1929 году. До этого большинство ученых считали Вселенную статичной — неподвижной и не меняющейся. Но Хаббл обнаружил, что она расширяется: группы галактик разлетаются одна от другой, так же как осколки разбрасываются в разных направлениях после космического взрыва (см. раздел "Постоянная Хаббла и возраст Вселенной" в этой главе).

Очевидно, что если какие-то объекты разлетаются, то когда-то они были ближе один к другому. Прослеживая процесс расширения Вселенной назад во времени, астрономы пришли к выводу, что около 12 миллиардов лет назад (плюс-минус несколько миллиардов лет) Вселенная представляла собой невероятно горячее и плотное образование, высвобождение огромной энергии из которого было вызвано взрывом колоссальной силы.

 Открытие космического микроволнового фона. В 1940-х годах физик Георгий Гамов понял, что Большой Взрыв должен был породить мощное излучение. Его сотрудники предположили также, что остатки этого излучения, охлажденные в результате расширения Вселенной, могут все еще существовать.

В 1964 году Арно Пенциас и Роберт Вилсон из AT & Т Bell Laboratories, сканируя небо с помощью радиоантенны, обнаружили слабое равномерное потрескивание. То, что они сначала приняли за радиопомехи, оказалось слабым "шелестом" излучения, оставшегося после Большого Взрыва. Это однородное микроволновое излучение, пронизывающее все космическое пространство (его еще называют реликтовым излучением). Температура этого космического микроволнового фона (cosmic microwave background) в точности такая, какой она должна быть по расчетам астрономов (2,73° по шкале Кельвина), если охлаждение происходило равномерно с момента Большого Взрыва. За свое открытие А. Пенциас и Р. Вилсон в 1978 году получили Нобелевскую премию по физике.

 Изобилие гелия в космосе. Астрономы обнаружили, что по отношению к водороду количество гелия в космосе составляет 24 %. Причем ядерные реакции внутри звезд (см. главу 11) идут недостаточно долго для того, чтобы создать так много гелия. Но гелия как раз столько, сколько теоретически должно было образоваться во время Большого Взрыва.

Как оказалось, теория Большого Взрыва успешно объясняет явления, наблюдаемые в космосе, но остается только отправной точкой для изучения начального этапа развития Вселенной. Например, эта теория, несмотря на ее название, не выдвигает никаких гипотез об источнике "космического динамита", который и вызвал Большой Взрыв.

Раздувание Вселенной

Помимо отсутствия указания источника взрыва, у теории Большого Взрыва есть и другие слабые места. Например, она не объясняет, почему районы Вселенной, которые разделяет такое огромное расстояние, что между ними нельзя установить связь, — даже с помощью посланника, путешествующего со скоростью света, — тем не менее, выглядят настолько похожими один на другой.

 В 1980-х годах физик Алан Гут выдвинул теорию раздувания (или инфляции) Вселенной, которая способна объяснить эти загадки. А. Гут предположил, что за крошечную долю секунды после рождения Вселенная испытала скачок колоссального роста. Всего за 10-32 секунды Вселенная расширилась со скоростью гораздо большей, чем когда-либо в последующие примерно 14 миллиардов лет, который прошли с тех пор.

В этот период мощного расширения мельчайшие фрагменты, которые раньше находились в тесном контакте, были разбросаны в далекие уголки Вселенной. А в большом масштабе Космос выглядит везде одинаково, в каком направлении наблюдатель ни направил бы свой телескоп. На самом деле в результате раздувания мелкие участки Космоса превращаются в объемы намного большие, чем земные астрономы когда-либо могли наблюдать. Из этого расширения следует возможность создания вселенных, находящихся далеко за пределами нашей собственной Вселенной. Возможно, существует не одна, а множество вселенных, или мультивселенная (multiverse).

У раздувания есть еще одно свойство. В процессе этого скачкообразного роста происходят захват случайных субатомных колебаний энергии и увеличение их до макроуровня. Благодаря сохранению и усилению этих квантовых колебаний в процессе раздувания создаются участки, немного различающиеся по плотности.

В одних районах, в среднем, содержится больше материи и энергии, чем в других. Это соответствует холодным и горячим температурным уровням космического микроволнового фона (см. предыдущий раздел и рис. 16.1). Со временем гравитация на основе этих различий создала тонкую паутину из скоплений галактик и огромных пустот, из которых состоит Вселенная сегодня.

Рис. 16.1. Светлые и темные пятна на этой карте неба, полученной с помощью спутника СОВЕ (Cosmic Background Explorer — Исследователь космического фона), указывают на горячие и холодные участки космического микроволнового фона

Фотография любезно предоставлена NASA

Нечто из ничего: раздувание и вакуум

По иронии судьбы, энергия, которая питает раздувание, генерируется из ничего: из вакуума. Но по квантовой теории, вакуум — это не значит пустота. Он полон частиц и античастиц, которые постоянно создаются и разрушаются. Подключение к этой энергии, по предположению теоретиков, обеспечило энергией Большой Взрыв и излучение, порожденное вместе с ним.

У вакуума есть еще одно странное свойство. Он может проявлять гравитационную силу отталкивания. Вместо того чтобы притягивать объекты, сила гравитационного отталкивания тянет их в разные стороны. Возможно, именно эта сила отталкивания стала причиной кратковременного, но интенсивного периода раздувания.

Раздувание и форма Вселенной

Процесс раздувания, по крайней мере в самой простой форме, которую можно представить, должен был привести к тому, что Вселенная стала бы плоской. Любая кривизна в космосе была бы вытянутой в этот период быстрого расширения. И мы получили бы знакомую евклидову геометрию на плоскости — вспомните линии и углы, нарисованные на листе бумаге, которые вы учили в средней школе.

Но чтобы Вселенная была плоской, она должна иметь особую плотность, называемую критической плотностью. Если бы плотность Вселенной превысила это критическое значение, гравитационное притяжение стало бы достаточно сильным, чтобы повернуть вспять процесс расширения, и в конце концов это привело бы к коллапсу, сжатию Вселенной, т. е. к тому, что астрономы называют Большим Сжатием (Big Crunch).

Такая Вселенная снова искривилась бы сама в себе, формируя замкнутое пространство конечного объема, такое как поверхность сферы. И космический корабль, летящий по прямой линии по поверхности этой сферы, в конце концов оказался бы в той точке, из которой стартовал. Математики называют это положительной кривизной.

Перейти на страницу:

Стивен Маран читать все книги автора по порядку

Стивен Маран - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Астрономия для "чайников" отзывы

Отзывы читателей о книге Астрономия для "чайников", автор: Стивен Маран. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*