Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности
Среднее изображение на рис. 10.8 описывает другую, более интересную математическую структуру с восемью элементами, которая включает их отношения. Одно из описаний этой структуры состоит в том, что ее элементы – это вершины куба, а отношения задают, какие вершины соединены между собой ребрами. Помните, однако, что не следует путать описание с тем, что описывается: математическая структура не имеет собственных свойств (например размера, цвета, текстуры или состава) – она содержит только восемь связанных отношениями сущностей, которые вы можете по желанию интерпретировать как вершины куба. На самом деле в правой части рис. 10.8 представлено эквивалентное определение этой математической структуры без ссылок на геометрические понятия вроде «куб», «вершина» или «ребро».
Но если сущности внутри этой структуры не имеют собственных свойств, то могут ли иметься такие свойства у самой структуры (помимо того, что в ней восемь элементов)? На самом деле, да, они есть – это симметрии. В физике нечто называют обладающим симметрией, если оно остается неизменным, когда вы определенным образом преобразуете его. Например, мы говорим, что ваше лицо обладает зеркальной симметрией, если оно кажется неизменным, будучи отраженным слева направо. В некотором смысле математическая структура на рис. 10.8 (в середине) обладает зеркальной симметрией: если вы поменяете местами элементы 1 и 2, 3 и 4, 5 и 6, 7 и 8, то схема отношений будет выглядеть точно так же, как прежде. Она также обладает некоторыми вращательными симметриями, соответствующими повороту нарисованного куба либо на 90° вокруг оси, проходящей через центры противоположных граней, либо на 120° вокруг оси, проходящей через противоположные вершины, либо на 180° вокруг оси, проходящей через середины противоположных ребер. Хотя интуитивно мы считаем, что симметрии связаны с геометрией, те же симметрии можно обнаружить, возясь с таблицей в правой части рис. 10.8: если определенным образом перенумеровать восемь элементов, а затем пересортировать таблицу в порядке возрастания номеров строк и столбцов, получится точно такая же таблица, какая была в начале.
Знаменитый больной вопрос философии – проблема бесконечного регресса. Например, если мы говорим, что свойства алмаза объясняются свойствами и расположением в нем атомов углерода, свойства атомов углерода – свойствами и расположением в них протонов, нейтронов и электронов, а свойства протонов – свойствами и расположением в них кварков, кажется, что мы обречены вечно пытаться объяснять свойства этих составных частей. Гипотеза математической Вселенной предлагает радикальное решение этой проблемы: на нижнем уровне реальность – это математическая структура, так что ее части вообще не имеют внутренних свойств! Иными словами, из гипотезы математической Вселенной вытекает, что мы живем в реляционной реальности, то есть свойства окружающего мира обусловлены не свойствами первичных «строительных блоков», из которых он сложен, а отношениями между «блоками»[68]. Внешняя физическая реальность является, таким образом, чем-то большим, нежели суммой ее частей. Она может иметь много интересных свойств, хотя ее части вообще не имеют собственных свойств.
Табл. 10.2. Ключевые понятия, связанные с идеей математической Вселенной.
Математические структуры на рис. 10.7 и 10.8 относятся к семейству математических структур, называемых графами: это абстрактные элементы, часть которых попарно связана. Можно применить другие графы для описания математических структур, соответствующих додекаэдру и прочим платоновым телам на рис. 7.2. Еще один пример графа – сеть «френдов» в «Фейсбуке». Здесь элементы соответствуют всем пользователям «Фейсбука», и два пользователя связаны, если между ними установлено отношение дружбы. Графы представляют собой лишь одно из множества семейств математических структур. Мы подробнее обсудим математические структуры в гл. 12, а пока разберем еще несколько примеров.
Есть много математических структур, соответствующих различным типам чисел. Так, натуральные числа (1, 2, 3, …) образуют математическую структуру. Здесь элементами служат числа, и существует много типов отношений. Некоторые отношения (скажем, равно, больше чем, делится на) могут связывать пары чисел («15 делится на 5»), другие устанавливаются между тремя числами («17 является суммой 12 и 5») и т. д. Постепенно математики открывали более широкие классы чисел, которые образуют собственные математические структуры: целые числа (включающие отрицательные числа), рациональные числа (включающие дроби), вещественные числа (включающие квадратный корень из 2), комплексные числа (включающие квадратный корень из -1) и трансфинитные числа (включающие бесконечные числа). Когда, закрыв глаза, я думаю о числе 5, оно кажется мне желтым. Однако во всех этих математических структурах числа сами по себе не имеют свойств, и все их свойства сводятся к их отношениям с иными числами: 5 имеет свойство быть суммой 4 и 1, например, но оно не желтое и ни из чего не сделано.
Еще один обширный класс математических структур соответствует различным пространствам. Например, трехмерное евклидово пространство, которое мы изучаем в школе, – это математическая структура. Здесь элементами выступают точки трехмерного пространства и вещественные числа, которые интерпретируются как расстояния и углы. Существует множество других типов отношений. Например, три точки могут удовлетворять тому отношению, что они лежат на одной прямой. Существуют различные математические структуры, соответствующие евклидову пространству с четырьмя и любым другим числом измерений. Математики также открыли множество других типов пространств более общего вида, которые образуют собственные математические структуры, вроде пространства Минковского, римановых, гильбертовых, банаховых и хаусдорфовых пространств. Многие думают, что наше трехмерное физическое пространство является евклидовым. Однако в гл. 2 мы узнали, Эйнштейн положил этому конец. Сначала его специальная теория относительности показала, что мы живем в пространстве Минковского (включающем время в качестве четвертого измерения), а затем общая теория относительности заменила пространство Минковского римановым пространством, то есть способным искривляться. Затем появилась квантовая механика (гл. 7), утверждающая, что на самом деле мы обитаем в гильбертовом пространстве. И вновь точки этих пространств ни из чего не сделаны и не имеют цвета, текстуры или каких-либо иных собственных свойств.
Хотя наша коллекция известных математических структур обширна и необычна и еще больше их пока не открыто, каждую математическую структуру можно проанализировать на предмет симметричности, и у многих обнаруживаются интересные симметрии. Крайне любопытно, что одним из самых важных открытий в физике стало наличие встроенных симметрий и у нашей физической реальности. Так, законы физики обладают вращательной симметрией, то есть во Вселенной нет выделенного направления, которое можно было бы назвать «верхом». Они также, по-видимому, имеют трансляционную симметрию (относительно сдвига), то есть нет особого места, которое можно было бы назвать центром пространства. Многие из упомянутых выше пространств обладают красивыми симметриями, порой совпадающими с наблюдаемыми симметриями физического мира. Например, евклидово пространство обладает как вращательной (нельзя обнаружить различия, если пространство поворачивается), так и трансляционной симметрией (нельзя обнаружить отличия, если пространство сдвигается). У четырехмерного пространства Минковского еще больше симметрий, и нельзя обнаружить различий, если выполнен обобщенный поворот между пространственным и временным измерениями (Эйнштейн показал, что именно поэтому кажется, что время замедляется, когда вы движетесь с околосветовой скоростью). В XX веке было открыто множество более тонких симметрий природы. Они лежат в основе эйнштейновских теорий относительности, квантовой механики и Стандартной модели элементарных частиц.
Обратите внимание: свойства симметрии, столь важные для физики, появляются именно благодаря отсутствию собственных свойств у «строительных блоков» реальности, то есть из самой сути того, что значит для нее быть математической структурой. Если выкрасить часть бесцветной сферы в желтый, ее вращательная симметрия будет нарушена. Подобным образом, если бы точки трехмерного пространства обладали свойствами, которые делали бы одни точки внутренне отличными от других, пространство утратило бы свою вращательную и трансляционную симметрию. «Меньше – это больше» в том смысле, что чем меньше свойств имеют точки, тем больше симметрий у пространства.