Коллектив авторов - Современная космология: философские горизонты
Становится понятным, что существующая теоретическая стратегия в значительной своей части уже сейчас имеет экспериментальное подтверждение, часть проблем планируется разрешить с помощью экспериментов на Боль-шом адронном коллайдере, однако многие вопросы, по-прежнему, будут оставаться длительное время без ответов. Это плата за дерзновенность самого замысла. Сейчас можно сделать вполне определенные прогнозы, являющиеся следствием достаточно смелых, но и надежных экстраполяций, являющих собой вполне конкретные теоретические разработки. А именно: на очень малых пространственновременных масштабах мы обязательно обнаружим дополнительные вакуумные структуры, связанные с расслоенной супергеометрией, являющиеся локальными проявлениями многомерных структур. Вопрос состоит в том, какая из имеющихся теоретических моделей в большей степени будет соответствовать экспериментальным результатам, на каких масштабах энергий? Но уверенность в том, что программа унификации (программа единой теории поля, включающей в себя концепцию суперструн) должна быть неизбежно связана с представлениями о сложной гетерогенной структуре вакуума и многомерностью пространства-времени, в среде ученых остается практически непоколебимой.
Характерно, что проблемы, обсуждаемые в рамках антропного принципа, согласно которому существование Вселенной в ее нынешнем виде (с присутствием в ней человека) зависит — и весьма критическим образом — от конкретных значений масс элементарных частиц и от величин констант фундаментальных взаимодействий, имеют, так сказать, вакуумную подоплеку. В работе1 показано, что эти значения отражают свойства физического вакуума и, более того, формируются ими.
Программа унификации с включенным в нее антропным принципом вновь ставит вопрос о глубинной взаимосвязи Вселенной, Жизни и Разума, ставит вопрос о Человеке и его миссии в этом мире. Все опять же возвращается в лоно вечных проблем, наиболее четко сформулированных И. Кантом: «Что я могу знать? Что я должен делать? На что я могу надеяться?»[314]. А это на современном уровне познания мира «подстрекает» к попытке сопоставления по уровню сложности биологические структуры и структуры гетерогенного вакуума.
Границы познаваемогоБиологические структуры построены из квантов фермионных и бозонных полей, масштабы которых достигают 10-8 см. Что касается вакуумных подсистем, то масштабы их функционирования от 10-13 до 10-30 см. То есть это системы, весьма различные по масштабам. Что понимается при их сопоставлении под уровнем сложности? Будем считать, что сложность объекта напрямую связана с количеством функциональных связей между элементами структуры и возможностями записи на этих структурах информации о самих объектах и об их истории, а также возможность использования этой информации для выработки реакций на изменение условий, в которых этих структуры существуют. Можно определенно утверждать, что сложность гетерогенного вакуума, по меньшей мере, одного порядка со сложностью биологических систем. Обе структуры являются эволюционирующими. Причем, если говорить о вакууме, то в области релятивистских фазовых переходов имеет место перестройка вакуума с рождением различных по своим свойствам объектов физического мира за счет диссипации энергии вакуума. Обе структуры обладают свойством самоорганизации. Самоорганизацию мы рассматриваем как способность реагировать на внешние условия, сопротивляясь их влиянию на разрушение структур. Само по себе понятие самоорганизации телеономично, ибо содержит в себе целеполагание на сохранение. Жизнь, с нашей точки зрения, — это способность реагировать на внешние условия с использованием информации. Здесь также существует цель, связанная с сохранением и воспроизводством. Разум — это способность реагировать на информацию с использованием ее для прогнозирования будущего. Можно сказать, что и здесь та же цель, но которая сопровождается тенденцией к изменению внешней среды в соответствии с оптимизацией условий существования. Обращает на себя внимание то обстоятельство, что в этой цепочке явно прослеживается расширение содержания понятия цели, и каждый раз расширяется количество информации и режим переработки этой информации. Излишне подчеркивать, что любая система имеет ограниченные возможности к прогнозу. Подобная способность разума должна быть обусловлена тем, что он представляет собой более сложную систему, чем среда, в которую он помещен. Если Вселенная способна к прогнозированию своей эволюции, то возникают (нередко повторяемые в ряде работ современных ученых) гипотезы о ее разумности или о Мировом Разуме. Излишне говорить о претенциозности и преждевременности такого подхода. Однако и точка зрения, базирующаяся на материализме, даже понятом в русле спинозовской концепции (на основании которой разум, мышление рассматривается в качестве атрибута материи, как необходимое условие самодвижения материи[315]), требуют в связи с полученными в физике результатами более внимательного рассмотрения. При таком подходе подразумевается, что само мышление, человеческий разум представляют собой более сложную систему, чем организующая его среда во всей ипостаси своего исторического развертывания. Это и составляет кредо антропоцентричного подхода. А что, если это не так? На повестку дня опять-таки выдвигаются такие ноумены, как мир в целом и душа. Если стать на редукционистские позиции и под душой человека понимать некоторое ин-формационное поле, то здесь наука находится далеко от границы познаваемого. Здесь ноуменальность прямо-таки налицо. Известно, что в физике информационные поля известны давно, информационные поля учитываются в квантовой физике и математически описываются вектором состояния. Напомним, что вектор состояния в математической форме содержит информацию о статистических распределениях всех физических величин, характеризующих микрообъект. Но в терминах статистического распределения можно представить любую информацию. Заметим, что именно это обстоятельство имеют в виду при разработке нанотехнологий для телекоммуникационных систем, целиком основанных на квантовой механике. Таким образом, информационные поля в физике есть. Существует весьма важный аспект. Дело в том, что согласно аксиоматике квантовой механики эти поля линейны. И это одна из причин, по которой буксует построение унифицированной теории. До тех пор, пока информационные поля в фундаментальной физике имеют линейный характер, ни о каком методологическом прорыве, использующем идею самоорганизации эволюционирующей Вселенной, говорить не приходится.
Что касается мира в целом, то это уровень рассуждений, презентирующий себя на научном уровне в рамках квантовой космологии. Сам термин «квантовая космология» является в некотором смысле спорным, потому что попытки квантования гравитационного поля по сей день не увенчались успехом: общая теория относительности и квантовая физика все еще только на пути к взаимосогласованию. Между тем, под квантовой космологией традиционно понимается область исследований, для которой такое согласование принципиально. Это масштабы энергий от 1016 до 1019 ГэВ (или от 10-30 до 10-33 см). На этих масштабах произошли явления, которые сформировали последующий облик Вселенной, сформировали свойства гетерогенного вакуума. Как отмечал Кант, «разум в своих изысканиях перешагивает все возможные границы», потому и в этой сфере существуют различные гипотезы, имеющие в определенном смысле фантасмагорические оттенки. Повторим, что существующая парадигма квантовой теории основана на делении мира на две подсистемы с последующим согласованием их свойств в рамках концепции целостности. Единственный способ введения даже линейных информационных полей сводится в теории к процессу квантования. Квантовая механика строится на основе классической заготовки, а потом проводится квантование. В попытках построения унифицированной теории эта попытка распространяется и на геометрические теории. Принципиальное значение здесь имеет следующее обстоятельство: идея целостности физических объектов и средств наблюдения реализуется в квантовой теории и в классических геометрических теориях различным образом. В квантовой теории она реализуется процессом квантования, переходом к операторному представлению, а в классических геометризированных теориях — путем введения дополнительных уравнений, задающих систему отсчета и, следовательно, состояние наблюдателей. Здесь надо иметь в виду, что в классической геометризированной теории система отсчета определяется как система, включающая множество наблюдателей, в отличие от квантовой теории, где система множества наблюдателей сразу приводит к проблемам. Таким образом, синтез квантового и геометрического представлений о природе физических полей является далеко нетривиальной задачей. По существу, здесь делается попытка двумя альтернативными способами, совместимость которых не очевидна, реализовать одну методологическую концепцию. Понятно, что нужна ключевая идея, объединяющая квантовый и геометрический подходы. Формулировку этой идеи надо искать при анализе тех проблем, которые существуют в обеих обсуждаемых теориях. Концепция целостности, реализующаяся в геометризированных теориях, по своей сути эквивалентна идее самоорганизации. Однако без идеи самоорганизации невозможен анализ и тех проблем, которые возникают в квантовой теории при наличии множества наблюдателей. Квантовая теория, с одной стороны, использует концепцию многовариантности путей эволюции (вероятностная динамика всегда многовариантна). А, с другой стороны, именно она решает проблему устойчивости основных физических состояний (электрон не падает на ядро, например). Сопоставление этих двух аспектов квантовой теории приводит к мысли, что постоянная Планка «h» является отражением происходящих в природе процессов самоорганизации, причем на самом фундаментальном уровне представлений о материи и пространстве-времени. Существует надежда, что введение кванта действия и калибровка существующих геометрических теорий — операции, имеющие идентичный смысл. И в рамках идеи самоорганизации совмещение этих двух процедур окажется возможным. А это указывает на необходимость обобщения принципов квантовой теории. В этом ключевая суть остро обозначившего себя поиска новых методологических подходов. Сегодня же мы констатируем трудности в применении процедуры квантования в современных геометризированных теориях. Теория суперструн генетически представляет собой программу классической заготовки. Так что здесь сразу вырисовывается главное препятствие в достижении унифицированности — трудности совмещения теории суперструн с процессом квантования. Следствием этого и является разделение всей мировой системы на две подсистемы: классическую, которую следует рассматривать как макрообстановку, которая должна быть строго детерминированной, и квантовую. То, что подобный подход является неполным, следует из анализа существования физических ситуаций, в том числе и в пределах достигнутых экспериментальных возможностей, когда разделение объекта исследования на классическую и квантовую подсистемы теряет смысл. Потому терминосистема «квантовая космология» отражает «мечту об окончательной теории».