Kniga-Online.club

Леонард Сасскинд - Космический ландшафт

Читать бесплатно Леонард Сасскинд - Космический ландшафт. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Та же самая квантовая дрожь, которая приводит к необъяснимо высокой энергии вакуума, может оказаться ответственной и за массы элементарных частиц. Предположим, что мы поместили частицу в дрожащий вакуум. Взаимодействуя с квантовыми флуктуациями, частица будет вносить возмущения в них в непосредственной близости от своего местоположения. Одни частицы будут гасить квантовые флуктуации, другие – усиливать их. Суммарным эффектом может стать изменение энергии этих флуктуаций. Эту дополнительную энергию, возникающую из-за присутствия частицы, можно интерпретировать как некую дополнительную массу (вспомните о E = mc2). Наиболее характерным примером является попытка рассчитать таким образом массу бозона Хиггса. При этом получается совершенно абсурдный результат, похожий на результат попытки оценить энергию вакуума. Вакуумная дрожь в окрестности бозона Хиггса приводит к добавке, имеющей порядок планковской массы!

Почему это нас так беспокоит? Хотя обычно теоретики фокусируются исключительно на бозоне Хиггса, описанная проблема относится ко всем элементарным частицам, за исключением фотона и гравитона. Любая частица, помещённая во флуктуирующий вакуум, приобретает ненормально большую массу. Но если все частицы увеличат свои массы, то всё вещество Вселенной станет во много раз тяжелее и гравитационные силы, действующие между телами, возрастут на много порядков. А мы помним, что даже незначительно увеличение гравитационной постоянной приведёт к полностью необитаемой Вселенной. Эту дилемму принято называть проблемой массы Хиггса, и она является ещё одной проблемой тонкой настройки Законов Физики, которую пытаются решить теоретики. Проблема массы Хиггса очень похожа на проблему малости космологической постоянной. Но какое отношение обе эти проблемы имеют к суперсимметрии?

Помните, как во второй главе я рассказывал о том, что фермионы и бозоны вносят противоположные вклады в энергию вакуумных флуктуаций и если бы их вклады удалось уравнять, это решило бы проблему энергии вакуума? Это верно и для нежелательных дополнительных масс частиц. В суперсимметричном мире огромный вклад квантовых флуктуаций можно приручить, оставив массы частиц невозмущёнными. Более того, даже нарушенная суперсимметрия могла бы облегчить проблему, если бы это нарушение было бы не слишком сильным. Это основная причина, по которой физики, изучающие элементарные частицы, надеются, что суперсимметрия ждёт их «за углом». Следует, однако, заметить, что нарушенная суперсимметрия всё равно не может объяснить столь невероятно малое значение космологической постоянной.

Проблема массы Хиггса похожа на проблему энергии вакуума ещё с одной стороны. Вайнберг показал, что жизнь не может существовать в мире со слишком большой энергией вакуума, и то же самое верно и для мира со слишком тяжёлыми элементарными частицами. Возможно, решение проблемы массы Хиггса лежит не в суперсимметрии, а в огромном разнообразии Ландшафта и антропной необходимости в небольшом значении этой массы. В течение нескольких лет мы сможем узнать, действительно ли суперсимметрия ждёт нас «за углом» или это мираж, который постоянно отступает при нашем приближении.

Один из вопросов, который неприлично задавать теоретикам, звучит так: «Если суперсимметрия настолько замечательна, элегантна и математически совершенна, почему мир не суперсимметричен? Почему мы не живём в столь элегантной Вселенной, которую струнные теоретики любят больше всего на свете?» Может ли причина заключаться в антропном принципе?

Наибольшая угроза для жизни в идеально суперсимметричной Вселенной исходит не со стороны космологии, а скорее со стороны химии. В суперсимметричной Вселенной каждый фермион имеет близнеца-бозона точно такой же массы – в этом и состоит проблема. Её виновниками являются суперпартнёры электрона и фотона. Эти две частицы, называемые сэлектроном (тьфу, язык сломаешь!) и фотино, вступают в тайный сговор с целью уничтожения всех обычных атомов.

Возьмём атом углерода. Химические свойства углерода в основном определяются его валентными электронами – наиболее слабо связанными электронами внешней оболочки. Но в суперсимметричном мире внешний электрон может излучать фотино и превратиться в сэлектрон. Безмассовый фотино улетает со скоростью света, оставляя сэлектрон заменять в атоме обычный электрон. А это большая проблема: сэлектрон, будучи бозоном, не подчиняется принципу запрета Паули и падает на самую низкую орбиту. За очень короткое время все электроны станут сэлектронами и окажутся на самой нижней орбите. До свидания, химические свойства углерода, прощайте, все прочие молекулы, необходимые для жизни! Суперсимметричный мир может быть очень элегантным, но он не способен поддерживать жизнь – по крайней мере, жизнь того типа, которую мы знаем.

Вернувшись на веб-сайт http://arXiv.org, вы найдёте там ещё два архива: General Relativity and Quantum Cosmology (Общая теория относительности и квантовая космология) и Astrophysics (Астрофизика). В статьях, публикуемых в этих разделах, суперсимметрия играет менее заметную роль. Почему космолог должен обращать какое-то внимание на суперсимметрию, если мир не является суперсимметричным? Ответом может служить переиначенная фраза Билла Клинтона: «Это Ландшафт, идиот!»[80] Несмотря на то что симметрия может быть частично нарушена, в большей или меньшей степени, в нашей маленькой домашней долине, это не значит, что симметрия нарушается во всех уголках Ландшафта. Та часть ландшафта теории струн, которую мы лучше всего изучили, является регионом, где суперсимметрия точная и ненарушенная. Пространство, называемое суперсимметричным пространством модулей (или пространством супермодулей), представляет собой часть ландшафта, где каждый фермион имеет свой бозон и каждый бозон имеет собственный фермион. Как следствие, энергия вакуума строго равна нулю во всём пространстве супермодулей. Топографически это означает, что данная часть ландшафта представляет собой плоскую равнину, лежащую на нулевой высоте. Большая часть того, что мы знаем о теории струн, зиждется на нашем 35-летнем опыте изучения этой равнины. Разумеется, это также означает, что некоторые карманы Мегаверсума должны быть суперсимметричными. Но ни один суперструнный теоретик не смог бы насладиться жизнью в одном из этих карманов.

Волшебная, таинственная и удивительная М-теория

Начиная с 1985 года теория струн, называемая теперь теорией суперструн,[81] существует в пяти версиях. Две из них наряду с закрытыми (замкнутыми) струнами содержат ещё и открытые (струны с двумя свободными концами), а три другие – только замкнутые. Названия этих пяти теорий не являются особо содержательными, но я их перечислю. Две теории с открытыми струнами называются теориями типа I. Три оставшиеся, содержащие только закрытые струны, известны как теория типа IIa, теория типа IIb и гетеротическая теория струн. Различия между ними носят слишком технический характер, и я боюсь, что их описание будет скучным для читателя. Но одна общая для всех этих теорий вещь гораздо интереснее, чем каждое из различий. Хотя некоторые теории содержат открытые струны, а некоторые – нет, все пять версий содержат закрытые струны.

Чтобы вы в полной мере смогли оценить, почему это так интересно, я должен пояснить, что именно разочаровывало исследователей во всех предыдущих теориях. В обычные теории – например, в квантовую электродинамику или в Стандартную модель, – гравитация добавлялась как «опция», как «плагин». Можно было либо игнорировать гравитацию, либо добавить её в готовое блюдо как специю. Рецепт прост: возьмите Стандартную модель и добавьте в неё ещё одну частицу – гравитон. Пусть гравитон будет безмассовым. Добавьте также несколько новых вершин в фейнмановскую диаграмму, чтобы любая частица могла испускать гравитоны. Блюдо готово. Но получившаяся теория работает не очень хорошо. Математика оказывается сложной и слишком чувствительной к малым возмущениям, и в конце концов фейнмановские диаграммы, содержащие гравитоны, превращаются в фарш из расчётов: все результаты оказываются бесконечными, и нет никакого способа придать этой теории хоть какой-нибудь смысл.

Мне кажется, что в каком-то смысле это хорошо, что простой путь завёл в тупик. В нём нет и намёка на объяснение свойств элементарных частиц. Он не даёт никакого объяснения, почему Стандартная модель именно такая, и он ничего не проясняет в вопросе тонкой настройки космологической постоянной или массы Хиггса. Откровенно говоря, если бы это работало, было бы очень обидно.

Но пять теорий струн вносят в этот вопрос полную ясность: они просто не могут быть сформулированы без гравитации. Гравитация в них – это не произвольная надстройка, а неизбежный результат. Теория струн, чтобы быть последовательной, обязана содержать гравитоны и силы, переносчиками которых они являются. Причина проста: гравитон – это закрытая струна, легчайшая из всех возможных. Открытые струны не являются обязательными для теории, но закрытые присутствуют всегда. Предположим, что мы пытаемся создать теорию, содержащую только открытые струны. Если бы мы добились успеха, то получили бы теорию струн без гравитации. Но мы успеха не добьёмся никогда, потому что два конца открытой струны всегда могут найти друг друга и замкнуться. Обычные теории оказываются самосогласованными только при отсутствии гравитации, в то время как теории струн согласуются, только если они включают гравитацию. Этот факт больше, чем любой другой, придаёт струнным теоретикам уверенность, что они находятся на верном пути.

Перейти на страницу:

Леонард Сасскинд читать все книги автора по порядку

Леонард Сасскинд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Космический ландшафт отзывы

Отзывы читателей о книге Космический ландшафт, автор: Леонард Сасскинд. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*