Виталий Бронштэн - Планета Марс
Да, такие прояснения наблюдались с 1937 г., когда Э. Слайфер впервые обратил на это внимание. Иногда вдруг па снимках Марса в синих и фиолетовых лучах проступала картина деталей поверхности планеты, доступная наблюдениям обычно в красных лучах. Факты таких прояснений никто и не пытался подвергнуть сомнению.
Основное разногласие состояло в другом. Советские фотометристы считали, что в атмосфере Марса, кроме г?за. могут быть и крупные частицы (аэрозоли), рассеивающие свет не по закону Рэлея. Они-то и создавали все эффекты, приписываемые фиолетовому слою, в том числе и прояснения. Если называть прослойки, содержащие такие аэрозоли, фиолетовым слоем, писал В. В. Шаронов, отвечая Вокулеру, то разногласий с его позицией не будет.
Но Вокулер наряду с другими авторами приписывал фиолетовому слою способность не только рассеивать, но и поглощать солнечный свет. Он так и назвал его: поглощающий высотный слой. Это, отмечал Шаронов, противоречило как фотометрическим наблюдениям, выполненным в СССР, так и многим другим фактам.
Приведем некоторые из них. Если частицы фиэлетового слоя достаточно крупные, то они будут рассеивать не только сине-фиолетовые, но и лучи других цветов, что, однако, не наблюдается. Если же этот слой обладает сильным поглощением фиолетовых лучей, то он не сможет создать яркую дымку рассеянного света, а его сгущения выступали бы на диске Марса в виде темных пятен, а не светлых облаков, которые наблюдаются в действительности, особенно вблизи терминатора (границы дня и ночи на Марсе).
Неясно было и из чего могут состоять частицы фиолетового слоя. Чехословацкий астроном Ф. Линк полагал, что это метеорные частицы, американец С. Гесс, - что это кристаллы углекислоты (002), его соотечественник Дж. Койпер считал их кристаллами льда, француз Э. Шацман-капельками воды. Однако гипотеза Линка не объясняла быстрых прояснений фиолетового слоя. Более обоснованной казалась точка зрения С. Гесса, объяснявшего эти прояснения испарением кристаллов СОа при вероятных повышениях температуры. Правда, трудно было объяснить, почему оно происходит сразу на целом полушарии планеты.
Многие ученые продолжали отстаивать точку зрения о наличии в атмосфере Марса истинного поглощения света. Ирландский астроном (эстонец по национальности) Э. Эпик предложил двуслойную модель: нижний слой, обладающий истинным поглощением, создает непрозрачность в фиолетовых лучах, а верхний слой производит рассеяние света, создает посветление вблизи лимба и яркие облака. В качестве вещества, создающего поглощение, назывались углерод и его полимеры (Сг,Сз,...,Сп), недокись углерода (0302), двуокись азота (NOa) и некоторые другие. Но признаков этих веществ не удалось обнаружить спектроскопически.
В 1969 г. выяснилось, что на снимках американских космических аппаратов "Маринер-6" и "Маринер-7", полученных в синих лучах, никакой дымки не видно, и поверхность Марса видна не хуже, чем в красных лучах. Но фиолетовый слой, если он существует, должен был Хбыть одинаково непрозрачным для приборов, находящихся на Земле и в космосе.
Сторонники гипотезы фиолетового слоя не сдавались. Э. Эпик, например, заявил, что все дело в недоразумении: синий фильтр "Маринеров" имел эффективную длину волны 469 ммк, на которой обычно явление синей дымки не наблюдается: оно становится заметным на более коротких длинах волн. В своей работе 1973 г. Эпик продолжал настаивать на истинном поглощении света атмосферой Марса, но приписал его частичкам пыли, поднимаемым и удерживаемым вертикальными токами в атмосфере. Их размеры, по Эпику, не превосходят одного микрона. Таким образом, речь идет не о "синей" или "фиолетовой", а скорее, о "красной" или даже "черной" дымке, так как ее альбедо (отражающая способность) в фиолетовых лучах крайне низкое (0,04)*).
В 1972 г. проблемой фиолетового слоя занялся американский астроном Д. Томпсон. Изучив всю имевшуюся литературу по этой проблеме (более 120 работ) и использовав фотографическую коллекцию Международного планетного патруля, Томпсон пришел к простому и неожиданному выводу. Никакого фиолетового слоя,
*) Альбедо в астрономии называется отношение количества отраженного планетой света к количеству солнечного света, падаюлцего на нее.
тающего или рассеивающего, нет. Вид Марса в фиолетовых лучах-это его нормальный вид, без всякой дымки. Просто в этих лучах контрасты между морями и материками слишком малы и мы их не различаем. Более того, из наблюдений в ультрафиолетовых лучах выяснилось, что в этих лучах все выглядит "наоборот"-моря кажутся светлее материков. Эти явления объясняются исключительно цветовыми особенностями пород, слагающих марсианские моря и материки, и атмосфера тут не при чем.
А как же "синие просветления", которые Вокулер четверть века назад считал самым сильным доказательством существования фиолетового слоя? Томпсон и Бойс тщательно проанализировали все случаи их наблюдений и пришли к выводу, что и здесь все обстоит наоборот. Никакого "просветления" не происходит, но в районе материков происходит осаждение чего-то вроде инея или же над ними (по метеорологическим причинам) образуется слой светлой дымки. Независимо от американских астрономов почти к такому же выводу пришла В. В. Прокофьева (Крымская астрофизическая обсерватория), объяснившая "синие прояснения" подъемом пыли с поверхности планеты над материками. Мелкие частицы пыли надолго остаются в нижних слоях атмосферы и несколько повышают яркость материков в синей области спектра. Контрасты между морями и материками в синих и фиолетовых лучах возрастают, и нам кажется, что атмосфера планеты "просветлела".
Так неожиданно разрешилась загадка фиолетового слоя и "синих просветлений".
Из чего состоит атмосфера Марса?
В 1947 г. Дж. Койпер впервые применил к изучению планет инфракрасный спектрометр-прибор, в котором приемником радиации служило фотосопротивление иэ сернистого свинца (PbS). Фотосопротивление двигалось вдоль спектра, а соединенный с ним самописец записывал непосредственно распределение энергии в спектре планеты.
Уже первые записи инфракрасных спектров Марса и Луны показали, что у первого значительно усилена полоса 002 на длине волны 1,6 микрона. Таким образом,
удалось установить присутствие этого газа (ранее обнаруженного в спектре Венеры) и в атмосфере Марса.
Однако установка Койпера имела весьма низкую разрешающую способность: с ее помощью нельзя было различить тонкие спектральные детали, так нужные астрономам для анализа состава атмосфер планет, притом анализа не только качественного (вещество имеется в атмосфере планеты), но и количественного (вещество содержится в таком-то количестве) .Как это ни странно, но ни сам Койпер, ни другие ученые не попытались в течение почти 10 лет усовершенствовать новый метод. Расцвет инфракрасной спектрометрии планет начался уже после 1960 г.
В 1964 г. американские астрономы X. Спинрад, Г. Мюнч и Л. Каплан по структуре линий, входящих в полосу 002 на длине волны 8700 ангстрем, получили количество 002 55 м-атм при температуре поверхности 230 °К. Приведенное число означает, что углекислый газ атмосферы Марса при нормальном давлении в 1 атмосферу мог бы образовать столб в 55 метров. На Земле содержание углекислого газа составляет лишь 2,4 м-атм. Более поздние исследования дали для оценки
-ния 002 значения от 54 до 90 м-атм, а в среднем 70 м-атм.
Какую же долю составляет углекислый газ в атмосфере Марса? На Земле эта доля весьма невелика, только 0,03%, на Венере же на долю 002 приходится 97% массы атмосферы. Что касается Марса, то первоначально углекислому газу отводилась скромная роль второстепенной компоненты марсианской атмосферы. Вокулер в 1954 г. "уделял" ему лишь 2% объема атмосферы, С. Гесс в 1961 г.-и того меньше, 1,3%. В модели Т. Оуэна и Дж. Койпера (1964 г.) на долю 002 приходится уже 14% объема атмосферы Марса. ^ Дело в том, что оценка содержания того или иного еЬза в атмосфере планеты зависит не только от интенсивности его линий в спектре, но и от принимаемого в
Хтечете общего давления у поверхности. Фотометрические наблюдения, как мы видели выше, не дают необходимой точности в определении давления и долго да"вё^1 преувеличенные значения. -Причиной этого была
Хййл^н другие аэрозоли, содержащиеся в атмосфере пла"leеfi4h создававшие дополнительное рассеяние света.
Но если мы примем завышенное значение давления атмосферы у поверхности, то' наблюдаемую интенсивность спектральных линий может создать меньшее количество углекислого газа. В качестве примера приведем расчеты Спинрада, Мюнча и Каплана 1964 г. Они рассматривали три модели с тремя разными значениями полного давления. Вот что у них получилось:
Однако в последние годы спектроскописты научились раздельно определять полное газовое давление и содержание 002, используя то обстоятельство, что давление по-разному влияет на интенсивность сильных и слабых линий данного газа.