Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления
Пределом цепочки ограничения любого понятия всегда будет какое-либо единичное понятие (см. раздел 1.1.), а пределом цепочки обобщения, как правило, будет какое-либо широкое, философское понятие, например: объект мироздания, форма материи или форма бытия.
Наиболее частые ошибки, которые допускают при ограничении и обобщении понятий, заключаются в том, что вместо вида для какого-то рода называют часть из некого целого, и вместо рода для какого-то вида называют целое по отношению к какой-либо части. Например, в качестве ограничения понятия «цветок» предлагают понятие «стебель». Действительно, стебель – это часть цветка, но ограничить понятие – значит подобрать не часть для целого, а вид для рода. Следовательно, правильным ограничением понятия «цветок» будет понятие «ромашка», или «тюльпан», или «хризантема» и т. п. В качестве обобщения понятия «дерево» нередко предлагают понятие «лес». Конечно же, лес является неким целым по отношению к деревьям, из которых он состоит, но обобщить понятие – значит подобрать не целое для части, а род для вида. Следовательно, правильным обобщением понятия «дерево» будет понятие «растение», или «объект флоры», или «живой организм» и т. п.
Итак, почти любое понятие (за исключением единичных и широких, философских) можно как ограничить, так и обобщить. Другими словами, подобрать для него как видовое понятие, так и родовое. Например, ограничением понятия «человек» (Ч) будет понятие «спортсмен» (С) или «писатель», или «мужчина», или «молодой человек» и т. п., а его обобщением будет понятие «живое существо» (Ж. с.) (рис. 14).
Проверьте себя:1. Что такое ограничение понятия?
2. Что представляет собой логическая операция обобщения понятия?
3. Каким образом ограничения и обобщения понятий складываются в логические цепочки? Каковы пределы цепочек ограничений и обобщений?
4. Какие ошибки часто допускают при ограничении и обобщении понятий? Продемонстрируйте на самостоятельно подобранных примерах, что целое и часть нельзя путать с видом и родом.
5. Всякое ли понятие можно подвергнуть ограничению или обобщению? Какие понятия не поддаются этим логическим операциям?
6. Подберите десять любых понятий и проделайте с ними ограничение и обобщение, т. е. подберите для каждого как видовое, так и родовое понятие, иллюстрируя эти операции схемами Эйлера.
1.5. Операция определения понятия
Определение понятия – это логическая операция, которая раскрывает содержание понятия.
Определения бывают явными и неявными.
Явное определение непосредственно раскрывает содержание понятия, даёт прямой ответ на вопрос, чем является объект, который оно обозначает. Например: «Термометр – это физический прибор, предназначенный для измерения температуры», – явное определение.
Неявное(контекстуальное) определение раскрывает содержание понятия не прямо, а косвенно, с помощью контекста, в котором это понятие употребляется. Например, из следующей фразы: «Во время этого грандиозного эксперимента сверхточные термометры зафиксировали температуру в 1 000 °C», – косвенно следует ответ на вопрос: «Что такое термометр?» – вытекает неявное определение этого понятия. Понятно, что определениями в полном смысле этого слова надо считать явные определения. В дальнейшем речь пойдёт именно о них.
Определения также бывают реальными и номинальными.
Реальное определение раскрывает содержание понятия, обозначающего какой-то объект, т. е. они посвящены объектам. Например:
«Термометр – это физический прибор, предназначенный для измерения температуры» – реальное определение.
Номинальное (от лат. nomen – имя) раскрывает значение термина, которым выражено какое-либо понятие, т. е они посвящены терминам (словам). Например: «Слово «термометр» обозначает физический прибор, предназначенный для измерения температуры», – номинальное определение.
Как видим, принципиальной разницы между реальными и номинальными определениями не существует. Они различаются, как правило, по форме, но не по сути.
Существует несколько способов определения понятия, но среди них выделяется классический способ, который заключается в том, что определяемое понятие подводится под ближайшее к нему родовое понятие, после чего следует указание на его видовое отличие. Например, определение: «Астрономия – это наука о небесных телах», – построено по классическому способу. В нём определяемое понятие «астрономия» сначала подводится под ближайшее к нему родовое понятие «наука» (астрономия – это обязательно наука, но наука – это не обязательно астрономия), а потом указывается на видовое отличие астрономии от других наук: «…о небесных телах». Пользуясь классическим способом, вы сможете дать точное и правильное определение любому понятию, конечно, если определяемый объект или термин вам хорошо знаком, и вы знаете, что он собой представляет или что означает, соответственно. Например, нам требуется дать определение понятию «квадрат». Следуя классическому способу, сначала подведём его под родовое понятие: «Квадрат – это геометрическая фигура», – а затем укажем его видовое отличие от других геометрических фигур, которое заключается в наличии равных сторон и прямых углов. Итак: «Квадрат – это геометрическая фигура, у которой все стороны равны и углы прямые». Давая определение понятию «квадрат», мы могли бы подвести его под более близкое родовое понятие «прямоугольник», и тогда определение получилось бы следующим: «Квадрат – это прямоугольник, у которого все стороны равны», – однако и приведённое выше определение квадрата раскрывает содержание соответствующего понятия и является верным. Обратите внимание на то, что фактически все определения, встречающиеся в научной, учебной и справочной литературе, например в толковых словарях, построены по классическому способу.
Существует несколько логических правил определения. Нарушение хотя бы одного из них приводит к тому, что содержание понятия не раскрывается и определение не достигает своей цели, являясь неверным. Рассмотрим эти правила и ошибки, возникающие при их нарушении:
1. Определение не должно быть широким, т. е. определение не должно превышать своим объёмом определяемое понятие. Например, определение: «Солнце – это небесное тело», – является широким: определение «небесное тело» по объёму намного больше определяемого понятия «Солнце». Из приведённого определения не вполне понятно, что такое Солнце, ведь небесное тело – это и планета, и комета и т. п. В данном случае можно также сказать, что, пользуясь классическим способом определения, мы подвели определяемое понятие «Солнце» под родовое понятие «небесное тело», но не сделали второй шаг – не указали на его видовое отличие.
2. Определение не должно быть узким, т. е. определение не должно быть по своему объёму меньше определяемого понятия. Например, определение: «Геометрия – это наука о треугольниках», – является узким. Геометрия действительно наука о треугольниках, но не только о них, а в нашем примере определение получилось по объёму меньше определяемого понятия, в результате чего из приведённого определения не совсем ясно, что такое геометрия, содержание понятия не раскрывается.
Как видим, ошибка узкого определения противоположна ошибке широкого определения. Если определение не должно быть широким и не должно быть узким, то каким же тогда оно должно быть? Оно должно быть соразмерным, т. е. понятие и его определение должны быть равны друг другу. Вернёмся к определению: «Астрономия – это наука о небесных телах», – которое является соразмерным. В этом примере определяемое понятие «астрономия» и определение: «…наука о небесных телах» находятся в отношении равнозначности: астрономия – это именно наука о небесных телах, а наука о небесных телах – это только астрономия. Определение является соразмерным тогда, когда между его первой частью (определяемым понятием) и второй (определением) можно поставить знак « = ». Если же между первой и второй частью определения ставится знак « > » или « < », то оно является ошибочным – широким или узким соответственно. В данном случае мы видим проявление одного из основных законов логики – закона тождества.
3. В определении не должно быть круга, т. е. в определении нельзя употреблять понятия, которые являются определяемыми. Например, в определении: «Клеветник – это человек, который занимается клеветой», – присутствует круг, поскольку понятие «клеветник» определяется через понятие «клевета», т. е. фактически – через само себя. Если бы, услышав приведённое определение, мы спросили, что такое клевета, нам могли бы ответить: «Клевета – это то, чем занимается клеветник». Присутствующий в определении круг (или тавтология, с греч. – повтор) приводит к тому, что содержание понятия не раскрывается, и определение является ошибочным. Однако наверняка найдутся люди, которые скажут, что из определения: «Клеветник – это человек, который занимается клеветой», – вполне понятно, и кто такой клеветник, и что такое клевета. Они могут так утверждать только потому, что им ранее было известно значение слов «клеветник» и «клевета». Станет ли понятно, что такое экзистенциализм из следующего кругового определения: «Экзистенциализм – это философское направление XX в., в котором ставятся и всесторонне рассматриваются различные экзистенциальные вопросы и проблемы»? Узнаем ли мы, что такое синергетика, благодаря такому круговому определению: «Синергетика – это раздел современного естествознания, который изучает разнообразные синергетические явления и процессы»?